首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA和最小二乘支持向量机的软测量建模
引用本文:郑小霞,钱锋. 基于PCA和最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2006, 18(3): 739-741
作者姓名:郑小霞  钱锋
作者单位:华东理工大学自动化研究所,上海,200237
摘    要:软测量技术是解决工业过程中普遍存在的一类难以在线测量变量估计问题的有效方法,支持向量机是基于统计学习理论的一种新的机器学习方法。提出了一种基于主元分析(PCA)和最小二乘支持向量机的软测量建模方法,用主元分析对输入变量进行数据压缩,消除变量之间的相关性,简化支持向量机结构,并通过交叉验证的方法对支持向量机进行参数选择。将其用于4-CBA软测量建模的结果表明:该方法具有学习速度快、跟踪性能好以及泛化能力强等优点,为4-CBA软测量建模的在线实施提供了方便。

关 键 词:支持向量机  主元分析  软测量  建模
文章编号:1004-731X(2006)03-0739-03
收稿时间:2005-01-04
修稿时间:2005-06-27

Soft Sensor Modeling Based on PCA and Support Vector Machines
ZHENG Xiao-xia,QIAN Feng. Soft Sensor Modeling Based on PCA and Support Vector Machines[J]. Journal of System Simulation, 2006, 18(3): 739-741
Authors:ZHENG Xiao-xia  QIAN Feng
Affiliation:Research Institute of Automation, East China University of Science and Technology, Shanghai 200237,China
Abstract:Soft sensor is an effective method to estimate variables which are difficult to be measured on-line in industrial processes.Support vector machine(SVM)is a novel machine learning method based on the statistical learning theory.A soft sensor based on principal component analysis(PCA)and Least Square SVM was proposed.The PCA method could not only solve the linear correlation of the input and compress data but also simply the SVM structure.Cross validation method was used to select parametrs of LS-SVM model.Soft sensor was applied to prediction of 4-CBA.Results indicates that this method features high learning speed,good approximation and well generalization ability.It provides convenice for on-line 4-CBA measurement.
Keywords:support vector machine  principal component analysis  soft sensor  modeling
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号