首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于CI特征的3-域均值平移聚类肺结节分割算法(英)
引用本文:聂生东,李立鸿,陈兆学. 一种基于CI特征的3-域均值平移聚类肺结节分割算法(英)[J]. 华东师范大学学报(自然科学版), 2008, 2008(1): 60-67
作者姓名:聂生东  李立鸿  陈兆学
作者单位:1. 上海理工大学,医疗器械与食品学院,上海,200093
2. 上海交通大学,医学图像处理与模式识别研究所,上海,200240
基金项目:上海市教委资助项目 , 上海市重点学科建设项目 , 上海市高校优秀青年教师后备人选科研项目
摘    要:提出了一种有效的分割CT图像中肺结节的新算法。该算法采用均值平移(mean shift)算法和基于CI特征,共由三个步骤组成:(1)计算感兴趣区内的所有像素的CI特征;(2)把CI特征与像素的灰度值和空间位置信息结合在一起,形成3-域特征向量集;(3)利用均值平移聚类算法对特征向量集进行聚类。由于本文的算法能有效分析多高斯模型描述的包括实质性结节和亚实质性结节在内的所有结节,因此,可应用于CT图像中任何含有结节的用户感兴趣区域。实验结果证明,本文方法能更精确地分割出不同类型的结节。

关 键 词:CT图像  结节分割  实质性结节  亚实质性结节  CI特征  均值平移算法  CT图像  结节分割  实质性结节  亚实质性结节  CI特征  均值平移算法
文章编号:1000-5641(2008)01-0060-08
收稿时间:2007-06-01
修稿时间:2007-06-01

Pulmonary nodule segmentation algorithm based on three-domain mean shift clustering(English)
NIE Sheng-dong,LI Li-hong,CHEN Zhao-xue. Pulmonary nodule segmentation algorithm based on three-domain mean shift clustering(English)[J]. Journal of East China Normal University(Natural Science), 2008, 2008(1): 60-67
Authors:NIE Sheng-dong  LI Li-hong  CHEN Zhao-xue
Affiliation:1. School of Medical Instrumentation &; Foodstuff, University of Shanghai for Science and Technology, Shanghai 200093, China;2. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China;
Abstract:In a Computer-Aided Detection (CAD) scheme for pulmonary nodules using computed tomography (CT) images, nodule segmentation is an important intermediate step, which impacts a great influence on the final performance of detection. In order to improve the detection rate of nodule and suppress the false positive, a more effective and physical meaningful nodule segmentation method is proposed in this paper. The algorithm is based on mean shift clustering method and CI (Convergence Index) features, which could represent the multiple Gaussian model of pulmonary nodules both for solid and sub-solid, substantially. This approach is based on an idea of utilizing features in a more "active" way, that is, we integrate the feature to the segmentation algorithm rather than just calculate them after segmentation. The presented segmentation method can figure out the outline of pulmonary nodules more precisely and especially suitable for the segmentation of sub-solid nodules.
Keywords:CT images  nodule segmentation  solid nodule  sub-solid nodule  CI feature  mean shift algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《华东师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华东师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号