首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
实型可分解算子组
作者姓名:
胡善文
作者单位:
华东师范大学数学系
摘 要:
Frunza在[1]中开创了对可分解算子组的研究工作,Eschmeier把这一工作推广到具有SDP的算子组的情况[2].而在另一方面Balint,Reghic在[3]、童裕孙在[4]中把单个算子的可分解性推广到了实型可分解性.本文着重讨论了算子组的实型可分解性,从不同方面推广了他们的主要成果,并找到了可分解算子组与实型可分解算子组之间的联系.
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号