首页 | 本学科首页   官方微博 | 高级检索  
     

基于小世界无标度特征的回声状态小波网络
引用本文:王怡鸥,丁刚毅,刘天元,刘来旸,蒙军,侯安琨. 基于小世界无标度特征的回声状态小波网络[J]. 北京理工大学学报, 2016, 36(5): 502-507. DOI: 10.15918/j.tbit1001-0645.2016.05.012
作者姓名:王怡鸥  丁刚毅  刘天元  刘来旸  蒙军  侯安琨
作者单位:北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081;北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081;北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081;北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081;北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081;北京理工大学软件学院,数字表演与仿真技术实验室,北京 100081
基金项目:国家自然科学基金资助项目(61202243);国家教育部高等学校博士学科点专项科研基金资助项目(20121101110037);江西省自然科学基金资助项目(20151BAB207042)
摘    要:针对储备池的适应性问题,提出了一种复合回声状态网络模型(CESN).CESN依据增量生长准则构建小世界无标度进化状态储备池,解除了储备池谱半径的限制.同时,CESN将离散小波函数作为神经元的激活函数,用Symlets小波函数替代部分储备池神经元的S型函数,Symlets小波函数的伸缩和平移变换特征丰富了动态储备池的状态空间.将CESN应用于一些非线性时间序列逼近问题中,即NARMA系统、Henon映射和二氧化碳浓度预测.实验结果表明,在逼近高度复杂的非线性系统方面,CESN明显优于注入Symlets小波的经典回声状态网络(S-ESN)和具有高聚类系数的无标度回声状态网络(SHESN). 

关 键 词:回声状态网络  小世界  无标度  小波函数  时间序列预测
收稿时间:2015-12-28

Echo State Wavelet Network with Small-World Scale-Free Characteristics
WANG Yi-ou,DING Gang-yi,LIU Tian-yuan,LIU Lai-yang,MENG Jun and HOU An-kun. Echo State Wavelet Network with Small-World Scale-Free Characteristics[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2016, 36(5): 502-507. DOI: 10.15918/j.tbit1001-0645.2016.05.012
Authors:WANG Yi-ou  DING Gang-yi  LIU Tian-yuan  LIU Lai-yang  MENG Jun  HOU An-kun
Affiliation:Digital Performance and Simulation Technology Lab., School of Software, Beijing Institute of Technology, Beijing 100081, China
Abstract:For adaptability problems of the reservoir, a composite echo state network (CESN) model was proposed. The small-world scale-free evolving state reservoir was constructed based on the incremental growth rules to relax the restriction for the spectral radius of the state reservoir. Moreover, discrete wavelet function was used as the activation function of neurons in CESN. The Symlets wavelet function was substituted for the fractional S-function of reservoir neurons, its dilation and translation features contributed to expanding the state space of dynamic reservoir. CESN can be applied to solve some approximation problems of nonlinear time series, which are the NARMA system, Henon map and the CO2 concentration prediction. The experiment results show that CESN is able to significantly outperform the ESN with injected Symlets wavelet (S-ESN) and scale-free highly clustered echo state network (SHESN) in approximating highly complex nonlinear dynamics.
Keywords:echo state network  small-world  scale-free  wavelet function  time-series prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号