首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scalable synthesis and electrochemical performance of mesoporous graphene from calcium carbonate by magnesiothermic reaction
Institution:School of Materials Science and Engineering (Henan Province Industrial Technology Research Institute of Resources and Materials), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, China
Abstract:A novel scalable synthetic method of mesoporous graphene has been developed using the compressed mixture of Mg and excess CaCO3 in a closed container. The generated solid oxide and unreacted CaCO3 could act as mesopore-forming agents, and the closed container could prevent the carbon dioxide from CaCO3 flow away. As a result, the graphenes with a large number of 2–30 ?nm mesopores and high utilization ratio of Mg achieved. The graphenes had high specific surface area and excellent electrochemical performance. In particular, the Mg utilization ratio was up to 53.3% in the preparation of graphene using 2:1 CaCO3/Mg at 700 ?°C, which is superior to previous researches. The obtained mesoporous graphene exhibited high specific surface area of 743.7 ?m2 ?g-1, large specific capacitance of 140 ?F ?g-1, and high capacitance retention rate of 64.3%.
Keywords:Mesoporous graphene  Scalable synthesis  Magnesiothermic reaction  Calcium carbonate  Electrochemical performance
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号