首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-temperature oxidation resistance of ceramic coatings on titanium alloy by micro-arc oxidation in aluminate solution
Institution:1. Mudanjiang Normal University, Mudanjiang, heilongjiang province, 157012, PR China;2. Harbin Institute of Technology, Harbin, heilongjiang province, 150001, PR China
Abstract:Ceramic coatings with aluminum titanuate (Al2TiO5) were prepared on Ti–6Al–4V alloy using pulsed bi-polar Micro-arc Oxidation (MAO). The micromorphology and phase composition of the micro-arc-oxidition ceramic coatings on the titanium alloy were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) respectively. The results revealed that the distinct discharge channels and pores on the surface of the micro-arc-oxidition coatings appeared, and these channels were connected in the molten state. The electrolyte concentration was inversely proportional to the coating hardness; additionally, the coating prepared with sodium aluminate and sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L, respectively, was the most refined after high-temperature sintering, and it was demonstrated to better prevent oxidation. Increasing the electrolyte concentration coincided with fluctuating coating thermal shock resistance. The thermal shock resistance of the coating respectively prepared with sodium aluminate, and the sodium hypophosphite concentrations of 4 ?g/L and 0.5 ?g/L was the highest. Additionally, the high-concentration coatings performed significantly better than the low-concentration coatings. The oxidation resistance of the coating samples was also significantly higher than that of the TC4 titanium alloy substrate. The adhesion strength between the coatings and the substrate with and without the sealing treatment was measured by tensile tests. Then, the high-temperature oxidation performance of the coating samples with and without the sealing treatment was investigated by conducting a high-temperature oxidation experiment at a calcinating temperature of 500 ?°C. The results indicate that the adhesion strength between the coatings and substrate was high for the as-prepared and sealed micro-arc oxidation samples regardless of whether they were calcined. The high-temperature oxidation mass increase curves for the sealed and unsealed coating samples calcined at 500 ?°C for 500 ?h revealed that the high-temperature-oxidation-induced mass increase of the coating samples sealed with a sodium silicate solution was much lower than that of the titanium alloy substrate. Thus, the sealing treatment significantly improved the high-temperature oxidation resistance of the TC4 titanium alloy. Lastly, the high-temperature oxidation behavior at 500 ?°C was analyzed and discussed.
Keywords:Micro-arc oxidation  Titanium alloy  Aluminate  High-temperature oxidation  Electrolyte concentration
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号