摘 要: | 设A_(m×n)是行和为R=(r_1,r_2,…,r_m)、列和为Q=(q_1,q_2 …,q_n)的(0,1)矩阵。设δ_i=(1,…,1,0,…,0),其中前r_i个位置为1,其余为0,A_(m×n)=称为A_(m×n)的极左矩阵,记其列和向量为S.设L(S)={S|SS,S的分量递降且为非负整数}。若S、TεL(S),S≠T,ST,且不存在V L(S),V≠S,V≠T,满足SVT,则称S是T的直接后继。设S=(S_1,S_2,…,S_n),T=(t_1,t_2,…,t_n),我们有定理1 若S是T的直接后继,则存在i、j’满足S_i+1=t_i,S_j-l=t_j,S_k=t_k(1≤k≤n,
|