首页 | 本学科首页   官方微博 | 高级检索  
     

基于核Fisher判别分析的粮虫特征压缩方法
引用本文:张红涛,毛罕平,韩绿化. 基于核Fisher判别分析的粮虫特征压缩方法[J]. 江苏大学学报(自然科学版), 2012, 33(1): 16-20
作者姓名:张红涛  毛罕平  韩绿化
作者单位:1. 江苏大学 现代农业装备与技术省部共建教育部/江苏省重点实验室,江苏镇江212013;华北水利水电学院 电力学院,河南郑州450011
2. 江苏大学 现代农业装备与技术省部共建教育部/江苏省重点实验室,江苏镇江,212013
基金项目:国家自然科学基金,河南省高等学校青年骨干教师资助计划项目
摘    要:针对粮仓害虫种类多、类别之间相似度比较高的特点,提出基于核Fisher判别分析的粮虫特征压缩方法.利用高斯径向基核函数,对特征选择后的10维原始数字特征进行核Fisher判别分析,即通过非线性变换将样本数据从输入空间映射到高维特征空间,然后在高维特征空间进行特征提取.从粮虫分类效果方面,将KFDA法与FDA法、PCA法和KPCA法3种方法进行了比较分析.应用KFDA法提取的前4个特征,由最近邻分类器对粮仓中常见的9类粮虫进行分类,验证集的识别率为93.33%.结果表明:KFDA法对粮虫特征的非线性比较敏感,在有效降低特征维数的同时,还提高了类别之间的可分性.

关 键 词:储粮害虫  特征压缩  核Fisher判别分析  主成分分析  识别

Feature compression of stored-grain insects based on kernel Fisher discrimination analysis
Zhang Hongtao , Mao Hanping , Han Lühua. Feature compression of stored-grain insects based on kernel Fisher discrimination analysis[J]. Journal of Jiangsu University:Natural Science Edition, 2012, 33(1): 16-20
Authors:Zhang Hongtao    Mao Hanping    Han Lühua
Affiliation:Zhang Hongtao1,2,Mao Hanping1,Han Lühua1(1.Key Laboratory of Modern Agricultural Equipment and Technology,Ministry of Education & Jiangsu Province,Jiangsu University,Zhenjiang,Jiangsu 212013,China;2.Institute of Electric Power,North China University of Water Conservancy and Hydroelectric Power,Zhengzhou,Henan 450011,China)
Abstract:Due to the characteristics of stored-grain insects with multi-species and high similarity among various species,a insects feature compression method was proposed based on kernel Fisher discrimination analysis(KFDA).According to Gaussian RBF kernel function,ten selected morphological digital insect features were analyzed by KFDA.The sample data were mapped from input space to high dimensional feature space through a nonlinear mapping function to extract.nonlinear features of raw space by Fisher discrimination analysis(FDA).According to classifier recognition ratio,KFDA was compared with FDA,principle component analysis(PCA) and kernel principle component analysis(KPCA).Based on the first four features from KFDA,nine species of stored-grain insects in grain-depot were automatically recognized by the nearest neighbor classifier with correct identification ratio of 93.33% for validation set.The results show that KFDA is sensitive to nonlinear features of insects.The feature dimensions can be effectively reduced with high separability among species by KFDA.
Keywords:stored-grain insects  feature compression  kernel Fisher discrimination analysis  principle component analysis  recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号