首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of actinide alpha-radiation damage in minerals and ceramics
Authors:Farnan Ian  Cho Herman  Weber William J
Institution:Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK. ifarnan@esc.cam.ac.uk
Abstract:There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alpha-decay. At present, this number is estimated to be 1,000-2,000 atoms/alpha in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/alpha in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of half-life or loading levels (dose rate). On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years). These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号