首页 | 本学科首页   官方微博 | 高级检索  
     

约束多目标进化算法修补算子的研究
作者单位:;1.汕头大学工学院广东省数字信号与图像处理技术重点实验室
摘    要:为了避免约束多目标进化算法陷入局部最优,提出了一种新的边界修补算子.该边界修复算子受到反向学习的启发,把违法盒型约束的解修复到其对应的反向可行边界,以增强约束多目标进化算法的多样性.为了验证所提的修补算子的有效性,在经典的约束多目标基准测试问题CTP2-CTP8上进行了实验仿真,仿真的结果表明所提出的新型的修补算子在多样性和收敛性上均优于现有的边界修补算子.为了进一步验证所提出的新型修补算子,设计了一组约束多目标优化问题MCOP1-MCOP7,作为CTP测试问题的有效补充.在MCOP1-MCOP7上的仿真结果同样表明,所提出的新型边界修补算子同时在收敛性和多样性上要优于现有的修补算子.

关 键 词:约束多目标进化算法  反向学习  修补算子

Research on Repair Operators in Constrained Multi-objective Evolutionary Algorithm
Abstract:
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号