首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解建模法的肌肉疲劳检测
作者姓名:王立玲  杨铮  刘瑾
作者单位:河北大学电子信息工程学院河北省数字医疗工程重点实验室;河北大学电子信息工程学院附属医院康复医学科
摘    要:针对表面肌电信号的非平稳特性,采用自回归(auto regression,AR)模型对表面肌电信号进行分析,对短时间内的表面肌电信号的肌肉疲劳迅速做出判定。首先对表面肌电信号进行经验模态分解,得到本征模态函数和趋势项,然后对趋势项进行零化处理,再对本征模态函数分量进行重构处理,重构后的信号可视为均值为零的平稳信号,最后将去势化的信号建立自回归模型,采用基于该模型的第一个时变参数(first time-varying parameter of auto regression modle,ARC1)作为检测肌肉疲劳灵敏度的快速指标。用疲劳前后的相关特征值的灵敏度波动比(sensitivity to variability ratio,SVR)来表征肌肉疲劳的灵敏度,较平均功率频率对疲劳反应灵敏度要高。该方法通过表面肌电信号对肌肉疲劳检测时,具有时间短、灵敏度高以及将表面肌电信号细微特征信息放大、便于识别等优点。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号