一种新的基于伪最近邻算法的降水预报方法 |
| |
引用本文: | 黄明明,林润生,黄帅,邢腾飞. 一种新的基于伪最近邻算法的降水预报方法[J]. 科学技术与工程, 2018, 18(17) |
| |
作者姓名: | 黄明明 林润生 黄帅 邢腾飞 |
| |
作者单位: | 北京市气象信息中心;中国地震局地壳应力研究所;腾讯大地通途(北京)科技有限公司 |
| |
基金项目: | 北京自然科学(8174078),国家自然科学(51708516)和预报预测核心业务发展专项:基于云计算环境的气象数据环境应用试验(CMAHX20160701)资助 |
| |
摘 要: | 分析北京地区日降雨量资料,相较于其他降雨事件,大雨或暴雨事件发生的次数较少,因此该地区的降水量预报属于样本不均衡问题。在样本不平衡的情况下,K最近邻(PNN)算法的分类误差率将会大大提高,这也就使传统的基于K最近邻算法的降水量预报方法的应用受到了限制。针对北京地区降水量预报这一样本不均衡问题,应用伪最近邻算法构建了北京市的降水量预报模型。该方法利用北京地区日降雨量资料和美国国家环境预报中心全球格点资料,将降雨量作为类,将美国国家环境预报中心全球格点资料的各种因子场作为天气样本特征,通过决策规则实现最优分类。利用提出的降水预报模型对北京地区2010年6~8月进行了24 h降水预报,实验结果表明,提出的预报方法对于降水等级预报的预报准确率以及晴雨预报的TS评分、正样本概括率和漏报率均优于传统的K最近邻预报方法,该方法具有较好的预报效果。
|
关 键 词: | 伪最近邻算法 K最近邻算法 降水量 |
收稿时间: | 2017-12-01 |
修稿时间: | 2018-01-25 |
A novel approach for precipitation forecast via pseudo nearest neighbor algorithm |
| |
Affiliation: | Beijing Meteorological Information Center,Beijing Meteorological Information Center,Institute of Crustal Dynamics,China Earthquake Administration, |
| |
Abstract: | After analyzing daily precipitation data in Beijing city, the number of heavy rainfall events or torrential rainfall events, as compared to the number of other events such as no rain events, light rain events and moderate rain events, is significantly few. Therefore, the precipitation data of precipitation forecast in Beijing city is imbalance. In the case of the precipitation data with an uneven distribution, the forecast performance of the traditional k-nearest neighbor algorithm based precipitation forecast method will degrade dramatically due to the classification error rate of the k-nearest neighbor algorithm rising greatly. To overcome the problem which is the sample size of the precipitation forecast in Beijing city is not balanced, the precipitation forecast model is established using Pseudo Nearest Neighbor (PNN) algorithm. Using the observed precipitation data in Beijing as the class and factors of the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset as the feature of the sample, we obtained the class label of the sample by the PNN rule. The extensive experiments of 24 hour precipitation forecast of Beijing city from June 1st to August 31th in 2010 are conducted. The proposed approach could get more accuracy, threat score, summary alarm rate and missing alarm rate than that of the precipitation forecast method based on k-nearest neighbor algorithm. The comprehensively experimental results suggest that the proposed approach is effective. |
| |
Keywords: | pseudo nearest neighbor algorithm k-nearest neighbor algorithm precipitation |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载全文 |
|