首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于动态模糊神经网络的飞行数据模型辨识方法
引用本文:张亮,张凤鸣,惠晓滨,毛红保. 一种基于动态模糊神经网络的飞行数据模型辨识方法[J]. 空军工程大学学报(自然科学版), 2006, 7(6): 16-18
作者姓名:张亮  张凤鸣  惠晓滨  毛红保
作者单位:空军工程大学,工程学院,陕西,西安,710038;空军工程大学,工程学院,陕西,西安,710038;空军工程大学,工程学院,陕西,西安,710038;空军工程大学,工程学院,陕西,西安,710038
摘    要:针对飞行数据的特点,提出了一种基于动态模糊神经网络(DFNN)的飞行数据模型辨识方法。该方法采用在线学习方式,通过动态增加和删除神经元节点的策略实现网络结构学习,采用递推最小二乘法实现网络权值的在线调整,以最终得到一个结构简单、泛化能力强的神经网络。以某特定时间段的飞参数据为仿真样本,将该DFNN用于参数关联模型的辨识,实验结果表明该辨识方法收敛速度快、泛化能力强。

关 键 词:动态模糊神经网络  飞行数据  模糊规则  辨识
文章编号:1009-3516(2006)06-0016-03
收稿时间:2006-01-05
修稿时间:2006-01-05

An Identification Method of Flight Data Model Based on Dynamic Fuzzy Neural Network
ZHANG Liang,ZHANG Feng-ming,HUI Xiao-bin,MAO Hong-bao. An Identification Method of Flight Data Model Based on Dynamic Fuzzy Neural Network[J]. Journal of Air Force Engineering University(Natural Science Edition), 2006, 7(6): 16-18
Authors:ZHANG Liang  ZHANG Feng-ming  HUI Xiao-bin  MAO Hong-bao
Affiliation:The Engineering Institute, Air Force Engineering University, Xi''an 710038, Shaanxi, China
Abstract:With regard to the characteristics of flight data,a new identification method of flight data model based on dynamic fuzzy neural network is presented.By on-line learning,the proposed DFNN is learned for a compact network with better generalization ability.The network structure is learned by means of adding or pruning a new neuron,furthermore,the linear parameters as network weights are gained based on the recursive least squares algorithm.Through a great number of observations in a certain sortie,the DFNN method is applied to the identification of the association model of flight data.The test results show that the method is of faster constringency and better generalization.
Keywords:dynamic fuzzy neural network  flight data  fuzzy rule  identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号