摘 要: | 提出了一种对铜锍品位进行预测的新方法 ,即以采集的现场数据为基础 ,采用系统辨识动态地建立了AR(p)模型与三次指数平滑模型 .AR(p)模型要求数据对象是平稳时间序列 ,而三次指数平滑模型的数据对象具有随机性 ,考虑到铜锍品位的波动性 ,将 2种模型按最小二乘原理 ,以组合预测误差平方和为目标函数 ,通过使误差平方和极小化来确定 2种预测方法的最优加权系数 ,建立了一种新的组合模型 ,其预测误差最小 .结果表明 ,在当时数据条件下 ,AR(p)与指数平滑组合模型比AR(p)与指数平滑模型单独使用时精确度都要高 ,这对指导生产具有实用意义 .
|