首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C均值聚类和神经网络的短时交通流预测方法
引用本文:杨世坚,贺国光. 基于模糊C均值聚类和神经网络的短时交通流预测方法[J]. 系统工程, 2004, 22(8): 83-86
作者姓名:杨世坚  贺国光
作者单位:天津大学,系统工程研究所,天津,300072
摘    要:短时交通流预测是动态交通控制和诱导的前提。提出一种模糊C均值聚类和神经网络相结合的短时交通流预测方法。用同一组实测数据对比计算了该方法与BP神经网络预测方法、模糊神经网络预测方法分别得到的预测结果。计算结果表明:所提出的方法的预测准确性明显地高于其他两种方法。

关 键 词:交通控制与诱导 短时交通流预测 模糊C均值聚类 BP神经网络
文章编号:1001-4098(2004)08-0083-04

A Short-term Traffic Flow Forecasting Method Based on Combination of Fuzzy C-mean Clustering and Neural Network
YANG Shi-jian,HE Guo-guang. A Short-term Traffic Flow Forecasting Method Based on Combination of Fuzzy C-mean Clustering and Neural Network[J]. Systems Engineering, 2004, 22(8): 83-86
Authors:YANG Shi-jian  HE Guo-guang
Abstract:Short-term traffic flow prediction is the basis of dynamic traffic control and guidance. In this article, a new fore- casting method, which combines fuzzy C-mean clustering and neural network techniques, is used to forecast short-term (traffic) flow. Based on the same real-time data, the forecasting results of this method are computed, and compared to other methods, e.g., Bp neural network and fuzzy neural network. The compute outcomes show that this method can produce (more) exact prediction results than other two methods.
Keywords:Traffic Control and Guidance  Short-term Traffic Flow Forecasting  Fuzzy C-mean Clustering  Back-propagation(BP) Neural Network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号