摘 要: | 针对传统BP神经网络在深基坑施工开挖变形的预测,基坑的安全性判定仅利用监测的最终数值而无法全面服务于深基坑工程,提出了一种遗传算法(Genetic Algorithm, GA)和贝叶斯正则化算法(Bayesian Regularization, BR)组合优化传统BP神经网络的预测模型,在优化预测模型中加入了影响深基坑安全稳定的客观因素及人为主观因素,进一步提高了BP神经网络全局优化能力以及泛化能力.研究结果表明:该组合优化方法对深基坑地表沉降和水平位移变形预测的平均相对误差分别为0.32%和0.59%,表现出较高的预测精度.该组合优化模型首次在深基坑变形领域验证了应用的可行性,为深基坑变形预测提供了新的思路和方法.
|