首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习算法的输电线路工程投资预测
引用本文:卢文飞,袁竞峰,张嘉澍,管维亚,张建峰. 基于机器学习算法的输电线路工程投资预测[J]. 科学技术与工程, 2022, 22(17): 6992-7001
作者姓名:卢文飞  袁竞峰  张嘉澍  管维亚  张建峰
作者单位:东南大学土木工程学院;国网江苏省电力有限公司经济技术研究院
基金项目:国网江苏电力设计咨询有限公司科技咨询项目-电网工程数据智能分析平台基础架构关键技术研究(SXZC-2020-0801A)
摘    要:技术方案深度的不足导致依据定额概预算来确定输电线路工程投资的方法准确性低、工作量大,因此,研究基于机器学习的投资预测模型需求迫切。针对输电线路投资的高维数、非线性等特点,提出了基于极端梯度提升(extreme gradient boosting, XGBoost)算法的输电线路工程投资预测方法。通过采用实际输电线路工程数据对模型进行训练和测试,预测结果显示XGBoost模型在预测精度、结果偏差方面相较于神经网络和支持向量机(support vector machine, SVM)都具有较大的优势,能输出指标重要性排序,为决策者提供有效的投资额和控制指标参考,且模型的可靠性和可解释性较高。

关 键 词:机器学习  XGBoost  输电线路工程  投资预测
收稿时间:2021-07-18
修稿时间:2022-03-01

Transmission line project investment prediction based on machine learning algorithm
Lu Wenfei,Yuan Jingfeng,Zhang Jiashu,Guan Weiy,Zhang Jianfeng. Transmission line project investment prediction based on machine learning algorithm[J]. Science Technology and Engineering, 2022, 22(17): 6992-7001
Authors:Lu Wenfei  Yuan Jingfeng  Zhang Jiashu  Guan Weiy  Zhang Jianfeng
Affiliation:School of Civil Engineering, Southeast University
Abstract:The lack of depth of technical solutions leads to the low accuracy and heavy workload of the method to determine the transmission line project investment based on the quota budget. Therefore, it is urgent to study the investment prediction model based on machine learning. According to the characteristics of high dimension and nonlinearity of transmission line investment, a transmission line project investment prediction model based on XGBoost algorithm is proposed. The model proposed is trained and tested by using the actual transmission line project data. The prediction results show that the XGBoost model has a great advantage over neural network and support vector machine (SVM) model in terms of prediction accuracy and deviation of results, and can output the index importance ranking, which can provide effective investment and control index reference for decision makers. And the model is highly reliable and interpretable.
Keywords:machine learning   XGBoost   transmission line projects   investment prediction
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号