首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊神经网络的商业银行信用风险评估模型研究
引用本文:吴冲,吕静杰,潘启树,刘云焘. 基于模糊神经网络的商业银行信用风险评估模型研究[J]. 系统工程理论与实践, 2004, 24(11): 1-8. DOI: 10.12011/1000-6788(2004)11-1
作者姓名:吴冲  吕静杰  潘启树  刘云焘
作者单位:哈尔滨工业大学管理学院
基金项目:国家社会科学基金(02BJY126),黑龙江省青年科学基金(QC04C25)
摘    要:在确立了商业银行信用风险评价指标体系的基础上,建立了基于模糊神经网络的商业银行信用风险评估模型.该网络具有四个因子输入,一个衡量商业银行信用风险的输出,总共六层的结构,且模糊规则层具有根据具体问题情况进行调节的能力,优于神经网络完全黑箱操作的特点.利用Matlab6.1对167组样本数据进行实证分析,训练结果表明网络预测误差小.

关 键 词:商业银行  信用风险评估  模糊神经网络  实证研究   
文章编号:1000-6788(2004)11-0001-08
修稿时间:2003-11-10

Study on Credit Risk Assessment Model of Commercial Banks Based on Fuzzy Neural Network
Chong WU,Jing Jie LV,Qi Shu PAN,Yun Tao LIU. Study on Credit Risk Assessment Model of Commercial Banks Based on Fuzzy Neural Network[J]. Systems Engineering —Theory & Practice, 2004, 24(11): 1-8. DOI: 10.12011/1000-6788(2004)11-1
Authors:Chong WU  Jing Jie LV  Qi Shu PAN  Yun Tao LIU
Affiliation:School of Management, Harbin Institute of Technology
Abstract:A commercial bank credit risk assessment model based on fuzzy neural network is established using the credit assessment index system established for commercial banks. This network is a 6-storey structure with 4 factor inputs and one output measuring the credit risk of commercial banks. The fuzzy rule layer has the capability of making necessary adjustments in accordance with specific conditions of problems. The operation of this model is much better than the totally black-box operation of a neural system. A substantiation analysis has been made with 167 groups of sampled data using Matlab 6.1, and training results indicate that the network prediction has less error.
Keywords:commercial bank  credit risk assessment  fuzzy neural network  substantiation research
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号