首页 | 本学科首页   官方微博 | 高级检索  
     

基于双通道多特征融合的电力负荷智能感知方法
引用本文:郇嘉嘉,汪超群,洪海峰,隋宇,余梦泽,潘险险. 基于双通道多特征融合的电力负荷智能感知方法[J]. 科学技术与工程, 2021, 21(13): 5360-5368. DOI: 10.3969/j.issn.1671-1815.2021.13.026
作者姓名:郇嘉嘉  汪超群  洪海峰  隋宇  余梦泽  潘险险
作者单位:广东电网有限责任公司电网规划研究中心,广州510080;浙江大学电气工程学院,杭州310007
基金项目:广东电网有限责任公司电网规划研究中心研究项目(GDKJXM20184328)
摘    要:负荷识别是分析用户用电行为的主要工具之一.提高负荷识别的精度对于开展用能监测服务、实现节能降损具有重要意义.提出了一种基于双通道多特征融合的电力负荷智能感知方法.首先,从电器设备的基本属性出发,分析了电流、谐波、功率等数值特征以及电压-电流(V-I)轨迹图像特征对负荷识别的影响;其次,考虑了特征之间的互补性,分别采用主...

关 键 词:非侵入式  负荷识别  双通道  特征融合  神经网络
收稿时间:2020-11-10
修稿时间:2021-04-22

Intelligent Power Load Identification Method Based on Dual-Channel And Multi-Feature Fusion
Huan Jiaji,Wang Chaoqun,Hong Haifeng,Sui Yu,Yu Mengze,Pan Xianxian. Intelligent Power Load Identification Method Based on Dual-Channel And Multi-Feature Fusion[J]. Science Technology and Engineering, 2021, 21(13): 5360-5368. DOI: 10.3969/j.issn.1671-1815.2021.13.026
Authors:Huan Jiaji  Wang Chaoqun  Hong Haifeng  Sui Yu  Yu Mengze  Pan Xianxian
Affiliation:Grid Planning & Research Center, Guangdong Power Grid Company
Abstract:Load identification is one of the main tools to analyze the behavior of electric power consumers. It is of great significance to improve the accuracy of load identification for power monitoring and energy saving. In this paper, an intelligent load identification method based on dual channel and multi-feature fusion was presented. Starting from the basic properties of electrical equipment, the influence of current, harmonic, power and other numerical features as well as V-I image features on load recognition was analyzed; then, considering the complementarity between the features, the PCA-BP neural network and convolutional neural network algorithms were used to deeply fuse numerical features and image features in high-dimensional space with different channels; finally, the Softmax classification algorithm was applied to learn the advanced features and equipment labels in a supervised way, so as to realize the effective identification of different types of electrical equipment. The test results show that the load identification accuracy of this method is as high as 94.55%. The results fully demonstrate that the multi-feature fusion in high-dimensional space can reflect the essential attributes of the equipment in a more comprehensive and stereoscopic manner, which leads to a significant improvement in the accuracy of load identification.
Keywords:non-intrusive   load identification   dual channel   multi-feature fusion   neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号