首页 | 本学科首页   官方微博 | 高级检索  
     

基于梅尔频率倒谱系数和支持向量机的汽车鸣喇叭声识别
引用本文:陈东,黄智鹏. 基于梅尔频率倒谱系数和支持向量机的汽车鸣喇叭声识别[J]. 科学技术与工程, 2021, 21(11): 4486-4491. DOI: 10.3969/j.issn.1671-1815.2021.11.027
作者姓名:陈东  黄智鹏
作者单位:华南理工大学机械与汽车工程学院,广州510640
基金项目:广东省重点领域研发计划项目(2019B090912001):基于正向开发的智能网联汽车关键技术研究。
摘    要:使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键.为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭声和交通噪声的二分类器,针对汽车喇叭声的谐波特征分布特点,提取其梅尔频率倒...

关 键 词:汽车鸣喇叭声识别  梅尔频率倒谱系数  支持向量机  特征识别
收稿时间:2020-07-15
修稿时间:2021-02-09

Car Honking Recognition Based on Mel Cepstrum Coefficient and Support Vector Machine
Chen Dong,Huang Zhipeng. Car Honking Recognition Based on Mel Cepstrum Coefficient and Support Vector Machine[J]. Science Technology and Engineering, 2021, 21(11): 4486-4491. DOI: 10.3969/j.issn.1671-1815.2021.11.027
Authors:Chen Dong  Huang Zhipeng
Affiliation:School of Mechanical Automotive Engineering,South China University of Technology
Abstract:Using Illegal Whistle Auxiliary Law Enforcement Equipment to monitor the occurrence of car honking events in urban traffic can effectively control the disturbing car honking. The recognition method of car honking is the key. In order to accurately and efficiently identify the car honking in road environmental noise, this paper uses support vector machine (SVM) as the binary classifiers of car honking and traffic noise. According to the harmonic feature distribution characteristics of car honk, the Mel frequency cepstrum coefficient (MFCC) is extracted as the eigenvector, and the influence of the number of Mel filters and feature dimensions on the recognition effect is analyzed. The results show that by increasing the number of Mel filters and feature dimensions of MFCC can improve the recognition effect, and such effect is more obvious for the lower signal-to-noise ratio (SNR).
Keywords:car honking recognition   mel cepstrum coefficient   support vector machine   feature recognition
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号