首页 | 本学科首页   官方微博 | 高级检索  
     

基于ANFIS的软测量模型在浮选中的应用
引用本文:王介生,张勇. 基于ANFIS的软测量模型在浮选中的应用[J]. 合肥工业大学学报(自然科学版), 2006, 29(11): 1365-1369
作者姓名:王介生  张勇
作者单位:辽宁科技大学,电子信息与工程学院,辽宁,鞍山,114044;辽宁科技大学,电子信息与工程学院,辽宁,鞍山,114044
摘    要:以浮选过程为研究对象,提出一种基于自适应神经-模糊推理系统的经济技术指标软测量模型。该模型采用主元分析进行输入数据集降维,运用最小二乘法和粒子群优化算法相结合的混合学习算法对自适应神经-模糊推理系统结构参数进行优化设计。该混合学习算法提高了网络参数辨识的收敛速度,仿真结果表明,提出的模型能很好地实现浮选过程经济技术指标的全局预测,满足优化浮选药剂添加的计算要求。

关 键 词:自适应神经-模糊推理系统  粒子群优化算法  主元分析  软测量
文章编号:1003-5060(2006)11-1365-05
修稿时间:2005-11-11

Application of the soft sensing model based on the adaptive network-based fuzzy inference system(ANFIS) to the flotation process
WANG Jie-sheng,ZHANG Yong. Application of the soft sensing model based on the adaptive network-based fuzzy inference system(ANFIS) to the flotation process[J]. Journal of Hefei University of Technology(Natural Science), 2006, 29(11): 1365-1369
Authors:WANG Jie-sheng  ZHANG Yong
Abstract:A soft sensing model for predicting economic and technologic indexes based on the adaptive network-based fuzzy inference system(ANFIS) is proposed for the flotation process.The model adopts principal component analysis(PCA) to reduce dimensions of the input data.The structure parameters of the ANFIS are tuned by the hybrid algorithm which combines particle swarm optimization(PSO) with the least-square method.The new algorithm greatly raises the speed of parameters identification and computation convergence.Simulation results show that the proposed modeling is effective in the prediction of indexes and meets the requirement of optimization computation for the flotation process.
Keywords:adaptive network-based fuzzy inference system(ANFIS)  particle swarm optimization algorithm  principal component analysis  soft sensing
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号