首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于模糊CMAC自学习模糊逻辑系统及其在控制中的应用
引用本文:段培永,张玫,邵惠鹤. 一种基于模糊CMAC自学习模糊逻辑系统及其在控制中的应用[J]. 上海交通大学学报, 2002, 36(4): 543-546
作者姓名:段培永  张玫  邵惠鹤
作者单位:1. 山东建筑工程学院,信息与电气工程系,济南,250014
2. 上海交通大学,自动化系,上海,200030
摘    要:把HCMA(Hyperball Cerebellar Model Articulation Conroller)与模糊逻辑理论有机结合起来,形成FHCMAC(Fuzzy HCMAC),它便于从输入输出数据中提取模糊规则,直接用作控制器。可以将FHCMAC看作用基函数网络实现的模糊逻辑系统,兼有HCMAC神经网络和模糊逻辑两者的优点,即可以较容易表达定性或模糊的经验知识,又具有很好的学习性能,应用仿真实例验证了其有效性,该方法可应用于难以获取模糊规则的吻合。

关 键 词:小脑模型 模糊神经网络 FHCMAC 模糊控制 自学习 模糊逻辑系统
文章编号:1006-2467(2002)04-0543-04
修稿时间:2001-04-29

CMAC Based Self-Learning Fuzzy Logical System and Its Application to Automatic Control
DUAN Pei yong ,ZHANG Mei ,SHAO Hui he. CMAC Based Self-Learning Fuzzy Logical System and Its Application to Automatic Control[J]. Journal of Shanghai Jiaotong University, 2002, 36(4): 543-546
Authors:DUAN Pei yong   ZHANG Mei   SHAO Hui he
Affiliation:DUAN Pei yong 1,ZHANG Mei 1,SHAO Hui he 2
Abstract:Combining hyperball cerebellar model articulation controller (HCMAC) with fuzzy logic theories, a fuzzy HCMAC (FHCMAC) was obtained, which can extract fuzzy rules for neurocontrol and be used as a controller directly. The controller is of powerful robustness. The FHCMAC can be regarded as a fuzzy logical system implemented by a basis neural network. It has the advantage of CMAC and fuzzy logic systems, namely, on one hand, FCMAC can express qualitative or fuzzy knowledge easily; on the other hand, it has perfect learning ability. The simulation example confirms the advantages. The presented method can be used to extract logic rules from input output data.
Keywords:cerebellar model articulation controller (CMAC)  self learning  fuzzy neural networks  fuzzy logical system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号