首页 | 本学科首页   官方微博 | 高级检索  
     

基于EPEA的SINS大失准角非线性初始对准方法
引用本文:赵红宇,王哲龙,姜鸣,宫少奇,尚红. 基于EPEA的SINS大失准角非线性初始对准方法[J]. 大连理工大学学报, 2012, 52(5): 736-742
作者姓名:赵红宇  王哲龙  姜鸣  宫少奇  尚红
作者单位:1. 大连理工大学控制科学与工程学院,辽宁大连116024 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳100080
2. 大连理工大学控制科学与工程学院,辽宁大连,116024
3. 浙江中控技术股份有限公司,浙江杭州,310052
4. 中国地震应急搜救中心,北京,100049
基金项目:中国博士后科学基金资助项目,国家地震行业科研专项资金资助项目,国家科技重大专项资助项目,国家自然科学基金资助项目
摘    要:基于欧拉平台误差角(EPEA)的概念描述了理论导航坐标系到计算导航坐标系之间的失准角,推导了捷联惯导系统(SINS)在大失准角情况下进行初始对准的非线性误差模型.在系统噪声和量测噪声均为加性噪声且量测方程为线性方程时,给出了带阻尼解算的简化扩展卡尔曼滤波(EKF)算法和简化无迹卡尔曼滤波(UKF)算法,同时分析了不同失准角情况下初始对准过程的异同.静基座状态下的Monte Carlo仿真结果表明,大失准角和大方位失准角情况下,EKF和UKF算法都能满足对准要求,其中UKF算法较EKF算法具有对准时间更快、对准精度更高和适用范围更广的优点;小失准角情况下,由于捷联惯导系统的线性化误差变小,二者的对准时间和对准精度基本相同.

关 键 词:捷联惯导系统  大失准角  非线性初始对准  扩展卡尔曼滤波  无迹卡尔曼滤波

SINS nonlinear initial alignment methods for large misalignment angles based on EPEA
ZHAO Hongyu,WANG Zhelong,JIANG Ming,GONG Shaoqi,SHANG Hong. SINS nonlinear initial alignment methods for large misalignment angles based on EPEA[J]. Journal of Dalian University of Technology, 2012, 52(5): 736-742
Authors:ZHAO Hongyu  WANG Zhelong  JIANG Ming  GONG Shaoqi  SHANG Hong
Affiliation:1.School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China; 2.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 100080,China; 3.SUPCON Group Co.,Ltd.,Hangzhou 310052,China; 4.National Earthquake Response Support Service,Beijing 100049,China
Abstract:Euler platform error angles(EPEA) are adopted to describe the misalignment angles from the theoretical navigation coordinate system to the computational navigation coordinate system,and the strapdown inertial navigation system(SINS) nonlinear error model is derived for initial alignment at large initial misalignment angles.The simplified extended Kalman filter(EKF) and unscented Kalman filter(UKF) algorithms with damp solution are presented when both process noise and measurement noise are additive and the measurement equation is linear,and a comparison is made between the filtering processes for different misalignment angles.The Monte Carlo results from the stationary simulation show that both EKF and UKF algorithms can obtain satisfactory alignment accuracy under large and large azimuth misalignment angles.But UKF is superior in alignment time,alignment precision and application scope in most cases except for the case of small misalignment angles,and in such a situation they have the same alignment performance due to the fact that the linearization error of SINS becomes smaller.
Keywords:strapdown inertial navigation system (SINS)  large misalignment angle  nonlinear initial alignment  extended Kalman filter  unscented Kalman filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号