首页 | 本学科首页   官方微博 | 高级检索  
     

基于MAPSO算法的小波神经网络训练方法研究
引用本文:唐雪琴,王侃,徐宗昌,黄书峰,李博. 基于MAPSO算法的小波神经网络训练方法研究[J]. 系统仿真学报, 2012, 24(3): 608-612
作者姓名:唐雪琴  王侃  徐宗昌  黄书峰  李博
作者单位:1. 装甲兵工程学院,北京100072/新疆乌市93886部队,乌市830005
2. 河南经贸职业学院信息管理系,郑州,450046
3. 装甲兵工程学院,北京,100072
摘    要:为提高小波神经网络(Wavelet Neural Network,WNN)的建模质量,针对标准粒子群(Particle Swarm Optimization,PSO)算法优化WNN存在的早熟和局部收敛问题,提出一种基于多粒子信息共享(Multi-particle information share)和自适应惯性权重(Adaptive inertia weight)策略的PSO方法(MAPSO)用于WNN训练。多粒子信息共享采用多粒子信息来修正各粒子下一次的行动策略,以降低粒子陷入局部最优的可能性;惯性权重自适应调整根据群体早熟收敛程度,按个体适应度自适应调整惯性权重,以使陷入局部最优粒子跳出。同时,给出了算法实现的基本流程。仿真结果表明MAPSO算法既具有PSO算法的简捷性,又能够提高WNN学习速度和精度及全局搜索能力,是小波网络的有效训练方法。

关 键 词:粒子群  小波神经网络  多粒子信息共享  自适应惯性权重  早熟收敛

Research on WNN Training Algorithm Based on MAPSO Algorithm
TANG Xue-qin,WANG Kan,XU Zong-chang,HUANG Shu-feng,LI Bo. Research on WNN Training Algorithm Based on MAPSO Algorithm[J]. Journal of System Simulation, 2012, 24(3): 608-612
Authors:TANG Xue-qin  WANG Kan  XU Zong-chang  HUANG Shu-feng  LI Bo
Affiliation:1(1.Academy of Armored Forces Engineering,Beijing 100072,China;2.Department of Information Management,Academy of Henan Economic Trade Vocation,Zhengzhou 450046 China;3.Troop No.93886 of PLA,Urumchi 830005,China)
Abstract:In order to improve the quality of WNN modeling,aiming at disadvantages of SPSO algorithm such as prematurity convergence and local minima in WNN training,MAPSO algorithm was proposed based on multi-particle information share and self-adaptive inertia weight adjustment.The multi-particle information share adopted multi-particle information to modify the action strategy of each particle at next time for reducing the probability of local minima.The inertia weight adjustment used individual fitness to adjust the inertia weight according to prematurity convergence degree of swarm for the particle under the local minima dapping.The processes of training WNN by this algorithm were presented.The simulation results show it is an effective algorithm,which not only is simple and efficient like PSO algorithm but also can increase the learning speed and precision,especially global search ability.
Keywords:particle swarm optimization(PSO)  wavelet neural network(WNN)  multi-particle information share  adaptive inertia weight  prematurity convergence
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号