首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群算法的转子支承参数优化设计
引用本文:吴庭苇,王士同. 基于粒子群算法的转子支承参数优化设计[J]. 江南大学学报(自然科学版), 2014, 13(4): 443-447
作者姓名:吴庭苇  王士同
作者单位:1. 天津大学机械工程学院,天津,300072
2. 江南大学数字媒体学院,江苏无锡,214122
摘    要:高速旋转飞轮转子的支承参数决定转子在过系统临界转速时的振幅大小和工作转速下的运行稳定性。选用具备自适应学习能力的粒子群算法(PSO),设计出能够表征系统过临界转速时的振幅和工作转速下衡量系统稳定性的目标函数式,利用PSO和该目标函数式,对系统进行参数优化。实验结果表明,利用PSO算法对该目标函数进行优化,最终得到的高速旋转飞轮转子系统参数,能有效地改善系统性能,提高系统运行稳定性。

关 键 词:粒子群算法  转子  支承参数  参数优化

Rotors Supporting Parameters Optimization Design Based on the Particle Swarm Algorithm
WU Tingwei,WANG Shitong. Rotors Supporting Parameters Optimization Design Based on the Particle Swarm Algorithm[J]. Journal of Southern Yangtze University:Natural Science Edition, 2014, 13(4): 443-447
Authors:WU Tingwei  WANG Shitong
Affiliation:WU Tingwei,WANG Shitong( 1.School of Mechanical Engineering,Tianjin University ,Tianjin 300072, China; 2.School of Digital Media,Jiangnan University, Wuxi 214122, China;)
Abstract:The high-speed rotate flywheel rotor's bearing parameters decide the amplitude of the rotor when crossing the system critical speed and the rotor's operational stability under the rated speed.This paper chooses the evolving learning algorithm equipped with self-adaptation learning ability-particle swarm optimization(PSO).It designs a new objective function which can surface the amplitude when the system crossing the critical rotation speed and the stability of the system under working speed.After that,it uses the PSO and the objective function to optimize the whole system parameters.The relevant experiments indicate that,the objective function optimized by the PSO algorithm can obtain the parameters that promote the system performance and the stability of the operation effectively.
Keywords:particle swarm oplimization algorithm  rotor  bearing parameters  optimization design
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号