首页 | 本学科首页   官方微博 | 高级检索  
     

DTCNN的人脸识别算法的Map-Reduce并行化实现研究
引用本文:郭礼华,牛新亚马军 刘彦能. DTCNN的人脸识别算法的Map-Reduce并行化实现研究[J]. 系统工程理论与实践, 2014, 34(Z1): 283-286. DOI: 10.12011/1000-6788(2014)s1-283
作者姓名:郭礼华  牛新亚马军 刘彦能
作者单位:1. 华南理工大学 电子与信息学院, 广州 510640;2. 广东创能科技有限公司, 广州 510260
基金项目:国家科技计划支撑项目(2013BAH65F01-2013BAH65F04);广州市科技计划(2012J2200010);广东省科技计划(2012B091100060);中央高校基本科研业务费专项资金(2013ZZ0054)
摘    要:传统人脸识别算法都采用基于特征提取的解决方案,所以有效的特征需要很强的先验知识和丰富的工程经验.本文引入深度平 铺卷积神经网络(deep tiled convolutional neural networks,DTCNN),利用深度平铺卷积神经网络的特征学习能力来实现 人脸识别,可是由于深度平铺卷积神经网络的运算复杂度高,并且在处理海量数据时会出现训练时间过长,内存占用大等问题.为此本 文提出一种Map-Reduce并行化的DTCNN算法.实验表明,深度平铺卷积神经网络能够获得比传统经典人脸识别更好的性能,而 Map-Reduce的引入又极大地减少了大数据集下的系统训练时间.

关 键 词:深度平铺卷积神经网络  Map-Reduce  人脸识别  特征学习  
收稿时间:2013-11-29

Research of face recognition algorithm using the deep tiled convolutional neural networks and Map-Reduce method
GUO Li-hua,NIU Xin-ya,MA Jun,LIU Yan-neng. Research of face recognition algorithm using the deep tiled convolutional neural networks and Map-Reduce method[J]. Systems Engineering —Theory & Practice, 2014, 34(Z1): 283-286. DOI: 10.12011/1000-6788(2014)s1-283
Authors:GUO Li-hua  NIU Xin-ya  MA Jun  LIU Yan-neng
Affiliation:1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China;2. Guangdong Chuangneng Technology Co., Guangzhou 510260, China
Abstract:The traditional face recognition methods were based on the feature extraction, but, the process of feature extraction needs the strong prior knowledge and plenty engineering experience. This paper introduces the deep tiled convolutional neural networks (DTCNN), which can learn the feature, to implement the face recognition, but the DTCNN will encounter many problems, such as costing too much time in training and occupying too much internal memory. This paper proposes a parallel deep tiled CNN using the framework of Map-Reduce to overcome these problems. The experimental results show that the performance of face recognition of our method is better than that of traditional method based on feature extraction, and system training time cost has been greatly decreased because of the parallel framework of Map-Reduce when testing the large scale dataset.
Keywords:deep tiled convolutional neural networks  Map-Reduce  face recognition  feature learning  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号