首页 | 本学科首页   官方微博 | 高级检索  
     

基于字典学习的LSP参数稀疏表示及性能分析
引用本文:闵 刚,张雄伟,杨吉斌,陈砚圃. 基于字典学习的LSP参数稀疏表示及性能分析[J]. 解放军理工大学学报(自然科学版), 2014, 0(2): 121-126
作者姓名:闵 刚  张雄伟  杨吉斌  陈砚圃
作者单位:1. 解放军理工大学 指挥信息系统学院,江苏 南京 210007;
2. 西安通信学院,陕西 西安 710106
基金项目:国家自然科学基金资助项目(61072125);江苏省自然科学基金资助项目(BK2012510)
摘    要:为了研究LSP的稀疏表示方法,高效量化LSP参数,基于字典学习对LSP参数进行稀疏表示,并采用MOD和K-SVD算法训练参数字典,以平均谱失真和均方根误差为准则,通过仿真实验分析了算法的有效性,得出了字典学习时的稀疏度、原子个数等关键参数选取的原则。对比训练和测试LSP参数均方根误差性能曲线发现:随着稀疏度的增加,LSP参数字典外推能力增强,对训练集外参数稀疏表示性能恶化逐步减弱。

关 键 词:线谱对  字典学习  稀疏表示  语音编码
收稿时间:2013-11-01

Sparse representation and performance analysis for LSP parametersvia dictionary learning
MIN Gang,ZHANG Xiongwei,YANG Jibin and CHEN Yanpu. Sparse representation and performance analysis for LSP parametersvia dictionary learning[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2014, 0(2): 121-126
Authors:MIN Gang  ZHANG Xiongwei  YANG Jibin  CHEN Yanpu
Affiliation:1. College of Command Information System, PLA Univ.of Sci. & Tech., Nanjing 210007, China;
2. Xi’an Communications Institute, Xi’an 710106, China
Abstract:To achieve the sparse representation of line spectrum pair(LSP) parameters and quantize the LSP parameters efficiently,the sparse representation of LSP parameters was studied based on dictionary learning while the dictionarywas learned by MOD and K-SVD algorithm. Experimental results show that the algorithm is effective via the ASDM and RMSE criteria. The principle for choosing the key parameters such as sparsity and the number of atomswas also derived. Comparing the RMSE curve of the training and test LSP parameters, it is found that the extrapolation performance for LSP dictionary is improved and the degrading performance for outside the training LSP set is decreased gradually with the increase of sparsity.
Keywords:line spectrum pair   dictionary learning   sparse representation   speech coding
本文献已被 CNKI 等数据库收录!
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号