摘 要: | 针对全天候工作的多模态行人检测算法体积大、运算量高、效率不足的问题,提出一种基于深度学习MBNet算法搭建的轻量级多模态行人检测算法(G-MBNet)。采用ResNet18算法并结合跨阶段链接的思想搭建CSP-ResNet18轻量级特征提取网络,以保证检测算法精度;引入轻量级高效通道注意力(ECA)模块来提升特征提取网络对重要特征的关注能力,在引入极少参数的情况下提升算法的检测精度;通过引入轻量级Ghost卷积模块来重构MBNet算法的特征提取网络,在保证特征提取性能的情况下进一步降低算法的参数与体积,提升算法的检测速度。采用所提的G-MBNet算法在KAIST行人数据集进行测试,实验结果表明:G-MBNet算法大小是原始算法的32.33%,参数量是原始算法的37.81%,检测速度是原始算法的1.53倍;G-MBNet算法可在保证行人识别精度的情况下有效提升检测速度。
|