摘 要: | 提出一种基于Sparse K-SVD学习字典的语音增强方法,采用Sparse K-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语音增强.使用NOIZEUS语音库进行了一系列的语音增强实验,主客观评测数据表明,基于稀疏表示的语音增强方法(分别使用Sparse K-SVD和K-SVD训练字典)相对于传统语音增强方法(小阈值波法、谱减法、改进谱减法)可进一步改善语音质量;对字典训练时间进行统计,发现Sparse K-SVD算法训练字典消耗的时间为K-SVD算法训练时间的1/6~1/10,大幅度提高了计算效率.
|