首页 | 本学科首页   官方微博 | 高级检索  
     

向量优化问题的一类高阶对偶
引用本文:杨瑞华. 向量优化问题的一类高阶对偶[J]. 渝西学院学报(自然科学版), 2012, 0(2): 5-8
作者姓名:杨瑞华
作者单位:重庆师范大学数学学院,重庆沙坪坝401331
基金项目:国家自然科学基金资助项目(11171363).
摘    要:Meetu在文献[1]中介绍了高阶锥凸、高阶(强)锥伪凸和高阶拟凸.本文在其研究的基础上,考虑目标函数是高阶锥伪凸、约束函数是高阶锥拟凸的情况,并给出弱极小、极小的充分性条件.此外,在高阶广义凸性的假设下,建立了一类高阶对偶模型的弱对偶和强对偶结果.

关 键 词:向量优化  高阶锥伪凸  高阶锥拟凸  高阶对偶

Higher order duality in vector optimization
Affiliation:YANG Rui - hua ( College of Mathematics, Chongqing Normal University, Shapingba Chongqing 401331, China)
Abstract:introduced minimum, Higher order cone convex, pseudo convex, strongly pseudo convex and quasiconvex functions are by Meetu [ 1 ]. In the paper, higher order sufficient optimality conditions are given for a weak minimum solution of a vector optimization problem under which an objective function is higher or-der cone pseudo convex and a constraint function is higher order cone quasiconvex. Moreover, weak and strong duality theorems are established for (HD) under these new generalized convexity assumptions.
Keywords:vector optimization  higher order cone pseudo convex  higher order cone quasiconvex  higher order duality
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号