向量优化问题的一类高阶对偶 |
| |
引用本文: | 杨瑞华. 向量优化问题的一类高阶对偶[J]. 渝西学院学报(自然科学版), 2012, 0(2): 5-8 |
| |
作者姓名: | 杨瑞华 |
| |
作者单位: | 重庆师范大学数学学院,重庆沙坪坝401331 |
| |
基金项目: | 国家自然科学基金资助项目(11171363). |
| |
摘 要: | Meetu在文献[1]中介绍了高阶锥凸、高阶(强)锥伪凸和高阶拟凸.本文在其研究的基础上,考虑目标函数是高阶锥伪凸、约束函数是高阶锥拟凸的情况,并给出弱极小、极小的充分性条件.此外,在高阶广义凸性的假设下,建立了一类高阶对偶模型的弱对偶和强对偶结果.
|
关 键 词: | 向量优化 高阶锥伪凸 高阶锥拟凸 高阶对偶 |
Higher order duality in vector optimization |
| |
Affiliation: | YANG Rui - hua ( College of Mathematics, Chongqing Normal University, Shapingba Chongqing 401331, China) |
| |
Abstract: | introduced minimum, Higher order cone convex, pseudo convex, strongly pseudo convex and quasiconvex functions are by Meetu [ 1 ]. In the paper, higher order sufficient optimality conditions are given for a weak minimum solution of a vector optimization problem under which an objective function is higher or-der cone pseudo convex and a constraint function is higher order cone quasiconvex. Moreover, weak and strong duality theorems are established for (HD) under these new generalized convexity assumptions. |
| |
Keywords: | vector optimization higher order cone pseudo convex higher order cone quasiconvex higher order duality |
本文献已被 维普 等数据库收录! |
|