首页 | 本学科首页   官方微博 | 高级检索  
     

广义Sylvester矩阵方程AX-XF=BY的显式解
引用本文:周彬,段广仁. 广义Sylvester矩阵方程AX-XF=BY的显式解[J]. 黑龙江大学自然科学学报, 2006, 23(1): 50-55
作者姓名:周彬  段广仁
作者单位:哈尔滨工业大学,控制理论与制导技术研究中心,黑龙江,哈尔滨,150001
基金项目:SupportedbytheChineseOutstandingYouthFoundation(69925308)
摘    要:给出了广义Sylvester矩阵方程AX-XF=BY当F为任意矩阵时的一种完全的解析通解.该通解由矩阵对(A,B)构成的能控性矩阵,一个对称算子矩阵和矩阵对(Z,F)构成的能观性矩阵组成,这里Z是一个任意的参数矩阵,用来表征该方程的解的自由度.利用著名的Levverrier算法,该解析解的一个等价形式被给出.给出的结果是参考文献[13]的推广,在[13]中F被假设为友矩阵.

关 键 词:广义Sylvester矩阵方程  通解  显式自由度  能控性矩阵  能观性矩阵
文章编号:1001-7011(2006)01-0050-06
修稿时间:2005-06-08

Explicit solutions to the generalized Sylvester matrix equation AX- XF = BY
ZHOU Bin,DUAN Guang-ren. Explicit solutions to the generalized Sylvester matrix equation AX- XF = BY[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(1): 50-55
Authors:ZHOU Bin  DUAN Guang-ren
Abstract:A complete, general and explicit solution to the generalized Sylvester matrix equation AX-XF=BY, with F being an arbitrary square matrix, is investigated. The proposed solution is in an extremely neat form represented by a controllability matrix of the matrix pair (A,B), a symmetric operator and an observability matrix of the matrix pair (Z,F), where Z is an arbitrary matrix used to denote the degree of freedom in the solution. Furthermore, based on the Faddeev-Leverrier algorithm, an equivalent form of the proposed solution is established. At the same time, an equivalent form of the solutions proposed in [13] is also induced. These results provide great convenience to the analysis and design problems in control systems. The results proposed in this note is a further discussion of the results proposed in [13].
Keywords:Sylvester matrix equations  general solutions  explicit freedom  controllability and observabiltiy matrices
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号