首页 | 本学科首页   官方微博 | 高级检索  
     

基于GM-RBF神经网络组合模型的水泥强度预测方法
引用本文:裘国华,申屠南瑛,施正伦. 基于GM-RBF神经网络组合模型的水泥强度预测方法[J]. 科技导报(北京), 2014, 32(3): 56-61. DOI: 10.3981/j.issn.1000-7857.2014.03.008
作者姓名:裘国华  申屠南瑛  施正伦
作者单位:1. 中国计量学院信息工程学院, 杭州 310018;
2. 中国计量学院机电工程学院, 杭州 310018;
3. 浙江大学能源工程学系, 能源清洁利用国家重点实验室, 杭州 310027
基金项目:国家科技支撑计划项目(2006BAC21B02)
摘    要: 为预测煤矸石代黏土煅烧水泥的28 d 抗压强度性能,根据生产水泥的物检分析数据,将GM(1,N)预测技术和径向基函数(RBF)神经网络技术相结合,提出了基于GM-RBF 神经网络组合模型水泥强度预测的新方法。该组合模型首先利用试验产品的典型物检数据建立GM(1,N)网络,对数据进行预处理。然后将输入样本数据进行一次累加生成操作,并进行归一化,设置GMRBF神经网络组合模型预测精度和散步常数。经处理后的输入样本作为RBF 神经网络输入向量,相应的实测28 d 抗压强度作为模型的输出期望值开展训练,比较预测数据与实测数据,并进行调整,最终得到符合精度要求的GM-RBF 神经网络组合模型。该组合模型一方面避免GM(1,N)模型的理论误差,利用累加生成运算和样本数据的预处理,减少了由于训练样本随机性对建模精度产生的影响;另一方面由于具有自适应、自组织和速度快等特点,能快速预测水泥远期强度情况。仿真试验表明,该模型预测精度优于单个GM(1,N)模型或RBF 神经网络模型,具有较好的拟合性,适用于对水泥强度的预测,可以为煤矸石代黏土煅烧水泥的质量分析提供有效参考。

关 键 词:GM-RBF 神经网络  累加生成运算  抗压强度  预测模型  
收稿时间:2013-09-05

Prediction Method of Cement Strength Based on GM-RBF Neural Network Combination Model
QIU Guohua,SHENTU Nanying,SHI Zhenglun. Prediction Method of Cement Strength Based on GM-RBF Neural Network Combination Model[J]. Science & Technology Review, 2014, 32(3): 56-61. DOI: 10.3981/j.issn.1000-7857.2014.03.008
Authors:QIU Guohua  SHENTU Nanying  SHI Zhenglun
Affiliation:1. College of Communication Engineering, China Jiliang University, Hangzhou 310018, China;
2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;
3. State Key Laboratory of Clean Energy Utilization, Department of Energy Enginering, Zhejiang University, Hangzhou 310027, China
Abstract:In order to predict the 28 day compressive strength of coal gangues as clay for cement, a prediction method of grey model and radial basis function (GM-RBF) neural network combination model is presented according to the data of cement physics test analysis. The method makes used of the advantage of both GM and RBF neural network. Firstly, the combination model built up GM(1, N) network based on its test analysis data, and the data were preprocessed. One accumulated generation operation (1-AGO) and normalization were carried out. Predicted precision and scatter constant were set up to the combination model. Then, these processed samples served as the input vectors for RBF neural network, the measurement data of 28 day compressive strength served as output expectation value for model. Comparisons were carried out between prediction data and measurement data, then the data were adjusted logically. Finally, the GM-RBF neural network combination model is fit for precision requirement. AGO and pretreatment were used for data processing which can reduce randomness of training samples. It also shows that the method is self-adaptive, self-organized and fast. The model can not only avoid the theoretical error of GM(1,N), but also predict the further period compressive strength. The results show that it is better than GM(1,N) model or RBF neural network model. The combination model owns a fine agreement and adapts to predict cement strength. It can provide efficient reference of quality analysis for coal gangues as clay for cement.
Keywords:GM-RBF neural network  accumulated generating operation  compressive strength  prediction model  
本文献已被 CNKI 等数据库收录!
点击此处可从《科技导报(北京)》浏览原始摘要信息
点击此处可从《科技导报(北京)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号