首页 | 本学科首页   官方微博 | 高级检索  
     

二阶常系数线性偏微分方程求解定理
引用本文:李志强,王显春,钟太勇. 二阶常系数线性偏微分方程求解定理[J]. 合肥学院学报(自然科学版), 2008, 18(1): 25-28
作者姓名:李志强  王显春  钟太勇
作者单位:云南民族大学,数学与计算机科学学院,昆明,650031;云南民族大学,数学与计算机科学学院,昆明,650031;郧阳师范高等专科学校,数学系,湖北,十堰,442000
摘    要:两个自变量的二阶常系数偏微分方程auxx+2buxy+cuyy+dux+euy+g=0,当系数满足一定条件时,可利用变换T:ξ=φ(x,y),η=Ф(x,y)化为简单微分方程求解,结合所定条件给出了判定定理和应用方法.

关 键 词:偏微分方程  特征线  特征方程
文章编号:1673-162X(2008)01-0025-04
修稿时间:2007-08-31

The Solving Theorem of Second Order Constant Coefficient Linear Partial Differential Equation
LI Zhi-qiang,WANG Xian-chun,ZHONG Tai-yong. The Solving Theorem of Second Order Constant Coefficient Linear Partial Differential Equation[J]. Journal of Hefei University(Natural Sciences Edition), 2008, 18(1): 25-28
Authors:LI Zhi-qiang  WANG Xian-chun  ZHONG Tai-yong
Affiliation:LI Zhi-qiang , WANG Xian-chun , ZHONG Tai-yong ( 1. School of Mathematics and Computer Science,Yunnan Nationalities University, Kunming 650031 ; 2. Department of Mathematics, Yunyang Teacher's College, Shiyan, Hubei 442000, China)
Abstract:Abstract:There is the second order constant coefficient linear patial differential equation with two variables auxx+2buxy+cuyy+dux+euy+g=0. When its coefficients satisfy given conditions, we can utilize the transformations T:ξ=φ(x,y),η=Ф(x,y) to make it as first simple ordinary differential equation for solving. At the same time, we give the discrimination theorem and application method.
Keywords:partial differential equation  eigenline  eigenequation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号