首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进生成对抗网络的抽油机故障诊断方法
作者姓名:刘远红  王庆龙  张文华  张彦生  李鑫
作者单位:1. 东北石油大学电气信息工程学院;2. 杭州紫雨科技发展有限公司;3. 大庆油田有限责任公司大庆钻探工程公司
摘    要:针对抽油机故障数据不足、样本分布不均衡的问题,提出一种基于自注意力机制的条件深度卷积生成对抗网络(CDCGAN:Conditional Deep Convolutional Generative Adversarial Networks)模型。该模型在CDCGAN的基础上引入自注意力机制,并在损失函数中加入约束生成图像分布的正则项,提高了生成图像的质量和多样性,有效地防止了模式崩溃的发生。采用Alexnet、VGG16等网络对生成的抽油机故障样本进行分类测试,实验结果表明,改进网络的生成数据质量更高,能够有效平衡抽油机故障数据,进一步提升了抽油机故障诊断的准确率。

关 键 词:故障诊断  生成对抗网络  自注意力机制  模式崩溃
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号