摘 要: | 本文旨在讨论每个子代数皆为理想的BCI一代数,得到了该类代数的一些充分条件与必要条件。设X是一个BCI—代数,x∈X,若0*(0*x)=x,则称x是一个P—半单元。用SP(X)表示X的全部P—半单元之集,则SP(x)是x的一个子代数。用P(X)表示X的BCK—部分,则P(X)是X的理想子代数,且易知P(X)∩SP(X)={0}。定理1 设X是一个BCI—代数,则SP(X)是X的理想当且仅当对任意x,x′∈P(X),y,y′∈SP(X),由x*y=x′*y′可推出x′=x,y′=y。定理2 设X是一个BCI—代数,若SP(X)是X的一个理想,则X中元可唯一地分解成P(X)中元与SP(X)中元之积。定理3 设X是一个BCI—代数.若M(X)非空,则P(X)≠{0},且SP(X)≠{O}。
|