首页 | 本学科首页   官方微博 | 高级检索  
     

多目标车辆路径问题的粒子群优化算法研究
作者单位:;1.吉林大学计算机科学与技术学院;2.吉林大学符号计算与知识工程教育部重点实验室;3.吉林大学软件学院
摘    要:针对粒子群算法(PSO)及其变种在约束多目标等复杂问题优化过程中所遇到的易陷入局部最优和收敛性问题,提出了一种基于动态学习和突变因子的粒子群算法(DSPSO)。首先,通过分析粒子群群体的学习机制,采用动态的学习策略,使粒子自适应动态调整认知成分和社会成分在迭代更新中的权重,以引导自身向最优解的方向探索,有效改善了群体的收敛速度;其次,通过引入阶梯突变因子的概念,使粒子在陷入局部最优时进行试探跳跃,阶梯突变赋予粒子突破更新步长限制的能力,使粒子在当前位置速度矢量方向上的二维空间邻域内进行试探寻优,当发现更优解时则跳出当前局部最优;最后,通过在BenchMark基准函数测试集中典型函数上的实验,证明了DSPSO的求解精度和收敛速度均优于对比算法。在多目标车辆路径问题实例优化中,解的可接受率和成功率分别为0.91和0.66,远优于对比算法中最优解的0.16和0.11,体现了所提改进算法在车辆路径问题中的优越性。

关 键 词:车辆路径问题  多目标优化  粒子群

A Novel Particle Swarm Optimization for Multi-Objective Vehicle Routing Problem
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号