首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合特征和LS-SVM的脱机手写体汉字识别
引用本文:高彦宇,杨扬,陈飞. 基于融合特征和LS-SVM的脱机手写体汉字识别[J]. 北京科技大学学报, 2005, 27(4): 509-512
作者姓名:高彦宇  杨扬  陈飞
作者单位:1. 北京科技大学信息工程学院,北京,100083
2. 北京尖峰计算机系统有限公司,北京,100083
摘    要:提出的脱机手写体汉字识别系统主要研究特征提取和分类识别两个模块.特征提取模块主要包括采用基于不变矩和弹性网格技术的串行特征融合方法,所得到的特征向量不仅充分反映了手写体汉字的全局和局部特征,而且具有很强的区分表达能力.分类识别模块将神经网络多类分类策略与最小二乘支持向量机相结合,所得到的分类器不仅识别率高、泛化能力强,而且有效地解决了多类分类问题.实验证明本文提出的识别系统能够取得很好的识别效果.

关 键 词:脱机手写体汉字识别  最小二乘支持向量机  Zemike矩  弹性网格  融合特征  脱机手写体汉字识别  features  fusion  based  识别效果  识别系统  验证  多类分类问题  泛化能力  识别率  分类器  结合  支持向量机  最小  分类策略  神经网络  识别模块  表达能力  局部
收稿时间:2004-05-10
修稿时间:2004-07-09

Off-line handwritten Chinese character recognition based on fusion features and LS-SVM
GAO Yanyu,YANG Yang,CHEN Fei. Off-line handwritten Chinese character recognition based on fusion features and LS-SVM[J]. Journal of University of Science and Technology Beijing, 2005, 27(4): 509-512
Authors:GAO Yanyu  YANG Yang  CHEN Fei
Abstract:The proposed off-line handwritten Chinese character recognition system was composed of a feature extraction module and a recognition module. In the feature extraction module, the orthogonal Zernike moments and the elastic mesh technique were combined to get fusion features, which present the global and local features of handwritten Chinese characters and have great discriminative capability. As for the classification module, one approach that is very similar to the neural network classification strategy was used with the Least Square Vector Machine (LS-SVM), which not only has the excellent performance of generalization and recognition accuracy, but also can solve the multi-classification issue effectively. Experimental results indicated that the proposed method could get good recognition results.
Keywords:off-line handwritten Chinese character recognition  least square support vector machine (LS-SVM)  Zemike moment  elastic mesh
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号