首页 | 本学科首页   官方微博 | 高级检索  
     

局部匹配的人脸识别方法
引用本文:何光辉,张太平. 局部匹配的人脸识别方法[J]. 重庆大学学报(自然科学版), 2012, 35(12): 133-138
作者姓名:何光辉  张太平
作者单位:重庆大学 数学与统计学院,重庆 400044;重庆大学 计算机学院,重庆 400044
基金项目:中央高校基本科研业务费专项项目(0208005202019)
摘    要:从人类认知方式出发,提出了一种基于统计学习的局部匹配人脸识别方法。该方法将人脸图像划分成若干小块,各个子块中包含不同的人脸形状特征,而不同的子块则描述了人脸主要部件之间的相对位置关系,然后根据各个子块鉴别能力的差异,将每个子块看成一弱分类器,利用Adaboost学习算法组成一个强分类器,提高最终的分类效果。实验结果表明该方法可以有效提高人脸的识别准确率并对人脸的表情和光照具有较好的鲁棒性。

关 键 词:局部匹配   统计学习   人脸识别

Face recognition method with local matching
He Guanghui and Zhang Taiping. Face recognition method with local matching[J]. Journal of Chongqing University(Natural Science Edition), 2012, 35(12): 133-138
Authors:He Guanghui and Zhang Taiping
Affiliation:College of mathematics and Statistics; Department of Computer Science, Chongqing University,Chongqing 400044, China;Department of Computer Science, Chongqing University,Chongqing 400044, China
Abstract:From human cognition, a face recognition method with local matching based on statistical learning is proposed. The image is divided into several subimages and each subimage is considered as a weak classifier. The Adaboost learning algorithm is used to train the weak classifiers and construct a strong classifier. As a result, all subimages are effectively combined together to explore the best discriminating power and improve the classification accuracy. Compared with the holistic matching methods, the local matching method is robust to variations in illumination, expression, and pose, etc. The experimental results show that the proposed method can improve the face recognition accuracy and is robust to variations in illumination and expression.
Keywords:local matching   statistical learning   face recognition
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号