首页 | 本学科首页   官方微博 | 高级检索  
     

贝叶斯模型比较的多模型组合框架在软测量建模中的应用
引用本文:韩露,任江洪,黄毅卿. 贝叶斯模型比较的多模型组合框架在软测量建模中的应用[J]. 重庆大学学报(自然科学版), 2012, 35(6): 141-146
作者姓名:韩露  任江洪  黄毅卿
作者单位:1.重庆大学自动化学院,重庆,400044;2.重庆大学自动化学院,重庆,400044;3.重庆大学自动化学院,重庆,400044
基金项目:国家863计划资助项目(2009AA01Z310);中加政府间科技合作基金资助项目(2009DFA12100);重庆市科委自然科学基金资助项目(CSTC,2011BB008)
摘    要:针对基于单一模型建立的软测量模型存在着预测精度需要进一步提高的问题,在分析目前常用的2种多模型组合框架的基础上,提出了一种基于贝叶斯模型比较的多模型组合框架。该框架以通过模糊c-均值聚类分析获得的生产过程状态变化知识为基础,对每种状态下各子模型的预测性能采用贝叶斯模型比较方法进行比较,并以此为基础在不同状态下采用了不同的子模型加权策略。在进行模型比较时,基于交叉检验分布,使用子模型训练所得采样序列,有效地减少了计算量。将该框架用于工程应用,取得了较好效果。

关 键 词:贝叶斯模型比较  软传感器  蒙特卡洛方法  参数估计

A multi model composition framework based on bayesian model comparision and its application in soft sensor modeling
HAN Lu,REN Jiang hong and HUANG Yi qing. A multi model composition framework based on bayesian model comparision and its application in soft sensor modeling[J]. Journal of Chongqing University(Natural Science Edition), 2012, 35(6): 141-146
Authors:HAN Lu  REN Jiang hong  HUANG Yi qing
Affiliation:College of Automation, Chongqing University, Chongqing 400044, P.R. China;College of Automation, Chongqing University, Chongqing 400044, P.R. China;College of Automation, Chongqing University, Chongqing 400044, P.R. China
Abstract:In order to improve the prediction performance of single model based soft sensor, the features of the current model combination frameworksby analynizing, a new multi model combination framework based on the bayesian model comparison is proposed. In this framework, fuzzy c means clustering to the historial data is used to analyze the production states, then the prediction performance of sub models at different states are compared based on bayesian model comparison. The comparing results are the basis of the model combination stratery at different states. With adapting cross validation predictive distribution, the samples got from the trained models are used to successfully reduce computation load of model comparion.The framework has obtained good results in the practical application.
Keywords:Bayesian model comparision   soft sensor   Monte Carlo method  parameter estimation
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号