首页 | 本学科首页   官方微博 | 高级检索  
     

图上自适应正则化的图像去噪
引用本文:刘国金,曾孝平,刘刈. 图上自适应正则化的图像去噪[J]. 重庆大学学报(自然科学版), 2012, 35(10): 63-68
作者姓名:刘国金  曾孝平  刘刈
作者单位:重庆大学 通信工程学院,重庆 400044;重庆大学 通信工程学院,重庆 400044;重庆大学 通信工程学院,重庆 400044;重庆气象局,重庆 401147
基金项目:国家自然科学基金资助项目(60971016);重庆市自然科学基金资助项目(CSTC2009BB2358);重庆大学研究生创新团队项目(200909C1015);中央高校基本科研业务费资助项目(CDJRC10160003)。
摘    要:自适应正则化方法在不同的局部区域能够选取不同的正则化参数和正则化约束,因而能够灵活地对边缘和噪声进行区别处理。将自适应正则化建立在图上,提出了一种定义在加权图上的,具有自适应参数的正则化模型。用nonlocal means 算法构造图的权重函数,用建立在图上的自适应正则化方程实现图像的去噪处理,仿真实验结果表明:该方法能有效地去除图像中的噪声,在去噪性能上优于部分基于图论的偏微分方程方法。

关 键 词:图像去噪  自适应正则化  图论  偏微分方程

Image denoising based on adaptive graph regularization
LIU Guojin,ZENG Xiaoping and LIU Yi. Image denoising based on adaptive graph regularization[J]. Journal of Chongqing University(Natural Science Edition), 2012, 35(10): 63-68
Authors:LIU Guojin  ZENG Xiaoping  LIU Yi
Affiliation:College of Communication Engineering, Chongqing University, Chongqing 400044, China;College of Communication Engineering, Chongqing University, Chongqing 400044, China;College of Communication Engineering, Chongqing University, Chongqing 400044, China
Abstract:Adaptive regularization can select different parameters based on the features of local areas in an image, which can differentiate the edges and noise in an image flexibly. An adaptive graph regularization is proposed based on graph spectral theory and adaptive regularization, which uses the Non local means to generate the weighting function of graph. The adaptive graph regularization equation is used to filter the noisy image. Simulation results show that the proposed method can effectively remove the noise and is superior to other graph theory based partial differential equation methods.
Keywords:image denoising   adaptive regularization   graph theory   partial differential equation
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号