首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习和支持向量机集成学习的PM2.5浓度24 h预测
引用本文:韦惠红,李剑,张文言,雷建军,陈璇. 基于深度学习和支持向量机集成学习的PM2.5浓度24 h预测[J]. 华中师范大学学报(自然科学版), 2022, 56(2): 262-269. DOI: 10.19603/j.cnki.1000-1190.2022.02.009
作者姓名:韦惠红  李剑  张文言  雷建军  陈璇
作者单位:(1.武汉中心气象台, 武汉 430074; 2.湖北第二师范学院计算机学院, 武汉 430205)
基金项目:国家重点研发项目(2017YFC0212604);
摘    要:提前24 h准确预测PM2.5浓度可以有效的避免严重污染天气对人体带来的不利影响.为了提高深度学习模型PM2.5浓度24 h预测的性能和泛化能力,在传统循环神经网络(RNN)模型上添加支持向量回归(SVR)作为下采样层提取非线性特征并降维;然后添加多核卷积神经网络(CNN)提升特征表达能力;最后利用门控循环网络(GRU...

关 键 词:PM2.5浓度预测  循环神经网络  支持向量机  深度学习  集成学习
收稿时间:2022-04-07

PM2.5 24 hours prediction based on deep learning and support vector machine stacking model
WEI Huihong,LI Jian,ZHANG Wenyan,LEI Jianjun,CHEN Xuan. PM2.5 24 hours prediction based on deep learning and support vector machine stacking model[J]. Journal of Central China Normal University(Natural Sciences), 2022, 56(2): 262-269. DOI: 10.19603/j.cnki.1000-1190.2022.02.009
Authors:WEI Huihong  LI Jian  ZHANG Wenyan  LEI Jianjun  CHEN Xuan
Affiliation:(1.Wuhan Central Meteorological Observatory, Wuhan 430074, China;2.School of Computer, Hubei University of Education, Wuhan 430205, China)
Abstract:Predicting PM2.5 24 hours in advance will avoid the harm from serious air pollution. To enhance the efficiency and generalization ability of deep learning prediction models for PM2.5 24 hours in advance prediction, a sub-sampled layer based on support vector regression (SVR) was attached to traditional recurrent Neural Network (RNN) to perform nonlinear features extraction and dimension reduction. And then a multi-kernel convolutional Neural Network (CNN) was employed to enhance feature expression. At last, a gated recurrent unit (GRU) network was employed to provide high stability of time sequence prediction using its ability in long time information memory. The air quality data and meteorological data of Wuhan and its surrounding 13 cities from January 1, 2015 to April 10, 2020 were employed to test the SVR-CNN-GRU. The experiment results showed that SVR-CNN-GRU exceed RNN, SVR and random forest methods in higher prediction accuracy and stronger generalization ability whose R2 is 0.97. The proposed method would provide high accuracy prediction for early warning 24 hours in advance.
Keywords:PM2.5 prediction   RNN   support vector machine   deep learning   ensemble learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《华中师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华中师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号