首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的变电站巡检机器人道路场景识别
引用本文:刘明春,张葛祥,黄占鳌,鲜开义,黄志伟. 基于深度学习的变电站巡检机器人道路场景识别[J]. 科学技术与工程, 2019, 19(13)
作者姓名:刘明春  张葛祥  黄占鳌  鲜开义  黄志伟
作者单位:西南交通大学电气工程学院,成都,611756;西南科技大学制造科学与工程学院,成都,621010;深圳市朗驰欣创科技股份有限公司成都分公司;北京全路通信信号研究设计院集团有限公司成都分公司,成都,610000
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:为了提升变电站巡检机器人对自身所处环境的理解能力,将深度学习技术应用于变电站巡检机器人对道路场景的识别中,提出了一种全卷积道路场景识别网络(road scene recognition net,RSRNet)。该网络主要由相对浅层的编码网络和镜像结构与跳层融合结构相结合的解码网络组成,通过编码网络提取图像特征后由解码网络识别出图像目标信息。通过实验表明,本文提出的网络在同类型网络中识别精度及效率更高,同时在实际变电站场景中也表现出了优良的场景识别性能。

关 键 词:深度学习  全卷积神经网络  变电站巡检机器人  场景识别
收稿时间:2018-11-20
修稿时间:2019-01-04

Road Scene Recognition of Substation Inspection Robot Based on Deep Learning
LIU Ming-chun,HUANG Zhan-ao,XIAN Kai-yi and HUANG Zhi-wei. Road Scene Recognition of Substation Inspection Robot Based on Deep Learning[J]. Science Technology and Engineering, 2019, 19(13)
Authors:LIU Ming-chun  HUANG Zhan-ao  XIAN Kai-yi  HUANG Zhi-wei
Affiliation:School of Electrical Engineering, Southwest Jiaotong University,,School of Manufacturing Science and Engineering, Southwest University of Science and Technology,Launch Digital Technology Co., Ltd. Chendu Branch,Beijing National Railway Research & Design Institute of Signal & Communication Group Co., Ltd Chengdu branch
Abstract:In order to improve the understanding ability to the environment of substation inspection robot, a fully convolutional road scene recognition network (RSRNet) based on deep learning technology is used to recognize substation road scene. RSRNet is composed of shallow encoder network and decoder network combining of mirror structure and skip-level fusion structure. Encoder network is used to extract image features, decoder network is used to recognize image information. Experimental results show that the proposed network has higher recognition accuracy and efficiency compared to the same type of network. At the same time, it also shows excellent scene recognition performance in actual substation environment.
Keywords:deep learning fully convolutional network Scene Recognition substation inspection robot
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号