首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征组合分析的主泵异常检测方法
引用本文:龚安,史海涛. 基于特征组合分析的主泵异常检测方法[J]. 科学技术与工程, 2019, 19(12)
作者姓名:龚安  史海涛
作者单位:中国石油大学(华东)计算机与通信工程学院,青岛,266580;中国石油大学(华东)计算机与通信工程学院,青岛,266580
基金项目:国家科技重大专项,山东省重点研发计划项目
摘    要:为了解决传统阈值法在核电站主泵状态数据异常检测中的误判、实时性差等问题,提出一种基于单维状态数据特征分析和多维状态数据特征分析相结合的方法。对于单维状态参量,使用AR(auto regressive)模型拟合获得模型参数,再结合SOM(self organizing maps)神经网络的量化结果得到单维状态参量随时间变化的过渡概率序列;对于多维状态参量,使用OPTICS(ordering points to identify the clustering structure)算法聚类生成不同的模式组;然后根据两类特征提取结果综合分析,得到异常检测模型;最后将检测模型应用于主泵状态数据异常检测,并与其他方法进行比较。实验结果表明此模型在准确性、实时性上更具优势。

关 键 词:异常检测  SOM  过渡概率序列  OPTICS算法
收稿时间:2018-11-06
修稿时间:2019-02-19

Anomaly Detection Method of Main Pump based on Feature Combination Analysis
GONG An and SHI Hai-tao. Anomaly Detection Method of Main Pump based on Feature Combination Analysis[J]. Science Technology and Engineering, 2019, 19(12)
Authors:GONG An and SHI Hai-tao
Affiliation:College of Computer and Communication Engineering, China University of Petroleum (East China),
Abstract:In order to solve the problem of misjudgment and poor real-time performance of traditional threshold method in anomaly detection of main pump state data in nuclear power plant, a method based on single-dimensional state data and multi-dimensional state data feature analysis was proposed. For the feature extraction of single-dimensional state data,the AR model was used to fit the single-dimension state data to obtain the model parameters, and then the transition probability sequence of the single-dimension state data was obtained by combining the quantization results of SOM neural network. For the feature extraction of multi-dimensional state data, the OPTICS algorithm was used to cluster to generate different pattern groups. Based on the analysis of the two kinds of feature extraction results, an anomaly detection model was obtained. Finally, the detection model was applied to the anomaly detection of the main pump state data and compared with other methods. The experimental results show that the model has advantages in accuracy and real-time.
Keywords:anomaly detection SOM transition probability sequence OPTICS algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号