首页 | 本学科首页   官方微博 | 高级检索  
     

表示学习知识图谱的实体对齐算法
引用本文:朱继召,乔建忠,林树宽. 表示学习知识图谱的实体对齐算法[J]. 东北大学学报(自然科学版), 2018, 39(11): 1535-1539. DOI: 10.12068/j.issn.1005-3026.2018.11.004
作者姓名:朱继召  乔建忠  林树宽
作者单位:(东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
基金项目:国家自然科学基金资助项目(61272177).
摘    要:与现有的根据知识图谱的结构信息或实体属性特征进行相似度匹配的实体对齐的方法不同,提出了一种基于表示学习的知识图谱实体对齐方法.首先,在低维向量空间下,通过机器学习方法学得实体和关系的语义表示,这种表示形式蕴含了知识图谱的内在结构信息及实体属性特征;其次,将人工标注的实体对作为先验知识,学习知识图谱间实体对的映射关系.经实验验证表明:与基于特征匹配的方法SiGMa相比,本文方法能够有效提高知识图谱实体对齐的精确率,同时保持较高的F1值.

关 键 词:机器学习  表示学习  知识图谱  知识融合  实体对齐  

Entity Alignment Algorithm for Knowledge Graph of Representation Learning
ZHU Ji-zhao,QIAO Jian-zhong,LIN Shu-kuan. Entity Alignment Algorithm for Knowledge Graph of Representation Learning[J]. Journal of Northeastern University(Natural Science), 2018, 39(11): 1535-1539. DOI: 10.12068/j.issn.1005-3026.2018.11.004
Authors:ZHU Ji-zhao  QIAO Jian-zhong  LIN Shu-kuan
Affiliation:School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
Abstract:A novel supervised method for knowledge graph entity alignment based on representation learning was proposed, which is different from the existing methods due to the similarity of structural information or attributive characters. First, the method automatically learns the semantic representations for the entities and relations of a knowledge graph in a low-dimensional vector space was proposed, and these embeddings contain the intrinsically structural information of a knowledge graph and the attributive features of entities. Afterwards, taking the manually aligned entity pairs as prior knowledge, the cross-KG mapping relationship between entities could be learned, which will be used for predicting entity alignment. Experiments conducted on real datasets demonstrated that our method can effectively improve the precision of knowledge graph entity alignment while keeping a high F1 score, when compared with the feature matching based method SiGMa.
Keywords:machine learning  representation learning  knowledge graph  knowledge fusion  entity alignment  
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号