首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包和独立分量分析的微弱多源故障声发射信号分离
引用本文:王向红a,b,尹东a,胡宏伟a,毛汉领. 基于小波包和独立分量分析的微弱多源故障声发射信号分离[J]. 上海交通大学学报, 2016, 50(5): 757-763
作者姓名:王向红a  b  尹东a  胡宏伟a  毛汉领
作者单位:(1.长沙理工大学 a.工程车辆安全性设计与可靠性技术湖南省重点实验室,b.道路灾变防治及交通安全教育部工程研究中心,长沙 410004;2.广西大学 机械工程学院,南宁 530003)
基金项目:国家自然科学基金(51105045,51205031,51365006),湖南省教育厅重点项目(15A008),长沙理工大学工程车辆安全性设计与可靠性技术湖南省重点实验室基金(KF1507),长沙理工大学道路灾变防治及交通安全教育部工程研究中心项目(kfj140407)
摘    要:针对旋转机械设备中同时存在的裂纹、摩擦等多故障源信号难以检测和分离的问题,提出了一种基于小波包分析(WPA)与独立分量分析(ICA)的多源故障信号提取方法,即首先用WPA对含噪线性混合信号降噪预处理,由db2小波基函数进行5层分解后保留62.5~187.5kHz频段信号,然后采用ICA中的FastICA算法对降噪后的混合信号分离,最后对各通道分离出的信号用收缩函数进行频段内去噪处理.对不同输入信噪比的含噪微弱裂纹和摩擦信号进行提取和分析的结果表明,该方法能有效提取出输入信噪比大于-15dB的裂纹和摩擦信号.当混合信号信噪比为-15dB时,裂纹和摩擦信号的输出信噪比分别为-1.31和-1.36dB,相关系数分别为0.62和0.63,提取效果好于结合小波包和FastICA分离方法(信噪比分别为-1.74和-2.06dB,相关系数分别为0.59和0.59)以及单独采用FastICA算法(信噪比分别为-4.57和-4.31dB,相关系数分别为0.17和0.19).因此,所提出的综合WPA和ICA的方法是一种较好的多源微弱信号提取方法.

关 键 词:多源分离   小波包分析   独立分量分析   降噪  
收稿时间:2015-04-23

Separation of Weak Multi Source Fault Acoustic Emission Signals Based on Wavelet Packet and Independent Component Analysis
WANG Xianghonga,b,YIN Donga,HU Hongweia,MAO Hanling. Separation of Weak Multi Source Fault Acoustic Emission Signals Based on Wavelet Packet and Independent Component Analysis[J]. Journal of Shanghai Jiaotong University, 2016, 50(5): 757-763
Authors:WANG Xianghonga  b  YIN Donga  HU Hongweia  MAO Hanling
Affiliation:(1a. Hunan Province Key Laboratory of Safety Design and Reliability Technology for Engineering Vehicle, 1b. Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education, Changsha University of Science & Technology, Changsha 410004, China; 2. School of Mechanical Engineering Guangxi University, Nanning 530003, China)
Abstract:Abstract: Multi source fault signals (such as crack and friction signals) produced from rotating machinery are difficult to detect and separate; therefore, an extraction method of multi source fault signals based on wavelet packet analysis (WPA) and independent component analysis (ICA) was proposed. The wavelet packet technology was used to reduce the noise outside the frequency band of the linear mixed signals. The signals were decomposed by db2 wavelet into five layers while the signals with the frequency band from 62.5 to 187.5 kHz were reserved. Then, the mixed signals were separated by using the FastICA algorithm. Finally, the shrinkage function was used to reduce the noise in the frequency band. By extracting the noisy weak signals with different input SNRs, the results show that this method can effectively extract the crack and the friction signals with the input SNR higher than -15 dB. Their output SNRs are -1.31 and -1.36 dB and the correlation coefficients are 0.62 and 0.63, respectively, which are higher than those obtained by using the method combined WPA and FastICA and only FastICA algorithm. The SNRs are (-1.74 and -2.06 dB) and (-4.57,-4.31 dB) and correlation coefficients are (0.59,0.59) and (0.17,0.19) for the combined method and FastICA method, respectively. Thus, the method is very suitable for extraction and separation of multi source weak signals.
Keywords:Key words: multi-source separation  wavelet packet analysis (WPA)  independent component analysis (ICA)  de-noising  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号