首页 | 本学科首页   官方微博 | 高级检索  
     

混沌时间序列的混合遗传神经网络预测方法
引用本文:李目,何怡刚,周少武,谭文. 混沌时间序列的混合遗传神经网络预测方法[J]. 系统仿真学报, 2008, 20(21): 5825-5828
作者姓名:李目  何怡刚  周少武  谭文
作者单位:湖南科技大学信息与电气工程学院,湖南大学电气与信息工程学院
基金项目:国家自然科学基金,教育部高等学校博士学科点专项科研基金,教育部跨世纪优秀人才培养计划,湖南省自然科学基金
摘    要:在相空间重构理论的基础上,将改进的遗传算法和神经网络结合起来,提出了一种混合遗传神经网络预测混沌时问序列的方法.通过复相关法和Cao方法重构混沌时间序列,利用改进的遗传算法优化神经网络的结构、初始权值和阚值,然后训练神经网络求得最优解.该算法应用到混沌时间序列的预测中,验证了该算法的有效性,并与BP和RBF算法的预测精度进行了比较,仿真结果表明该算法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度.

关 键 词:混沌时间序列  相空间重构  遗传算法  神经网络  非线性预测

Hybrid Genetic Neural Network Method for Predicting Chaotic Time Series
LI Mu,HE Yi-gang,ZHOU Shao-wu,TAN Wen. Hybrid Genetic Neural Network Method for Predicting Chaotic Time Series[J]. Journal of System Simulation, 2008, 20(21): 5825-5828
Authors:LI Mu  HE Yi-gang  ZHOU Shao-wu  TAN Wen
Abstract:By incorporating modified genetic algorithm with the neural network,a novel hybrid genetic neural network method for predicting chaotic time series based on the theory of phase-space reconstruction was presented.The chaotic time series was reconstructed by using multiple correlation and Cao's methods,and the modified genetic algorithm was used to optimize the structure,the initial weights and thresholds of neural network,then neural network was trained to search for the optimal solution.The availability of this algorithm was proved by predicting chaotic time series,and the precision of this algorithm compared with those of BP and RBF algorithms.The computer simulations have shown that the nonlinear fitting and precision of this algorithm are better than those of BP and RBF algorithms.
Keywords:chaotic time series  phase-space reconstruction  genetic algorithm  neural network  nonlinear prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号