基于分数阶模型的非保守系统的Noether准对称性 |
| |
摘 要: | 提出并研究了非保守力学系统的分数阶Noether对称性及其守恒量。基于非保守系统的Hamilton原理,导出了分数阶模型下非保守系统的运动微分方程;根据分数阶Hamilton作用量在时间,广义坐标和广义速度的无限小群变换下的不变性,给出了非保守力学系统的分数阶Noether准对称性的定义和判据,建立了分数阶Noether准对称性与守恒量之间的联系,得到了分数阶Noether守恒量;最后,讨论了不存在非势广义力或规范函数等于零的特例,并举例说明结果的应用。
|
本文献已被 CNKI 等数据库收录! |
|