首页 | 本学科首页   官方微博 | 高级检索  
     

解三对角Toeplitz方程组的MIMD并行算法
引用本文:陈国清 陈廷槐. 解三对角Toeplitz方程组的MIMD并行算法[J]. 重庆大学学报(自然科学版), 1992, 15(4): 21-25
作者姓名:陈国清 陈廷槐
作者单位:重庆大学电子信息工程学院(陈四清,陈廷槐),重庆大学电子信息工程学院(周六丁)
摘    要:本文把秩1修正技术和一阶线递推并行消去法结合起来,给出了求解三对角Toeplitz方程组的MIMD并行算法,该算法结构简单,存储省,处理机之间通讯比较少,而且对处理机台数没有特殊要求,相对于追赶法的加速比可接近P/2(P为处理机台数)。值得指出的是,本文的算法关键产考虑并组织了一阶常系数线性递推的并行计算。

关 键 词:三对角 Toeplitz方程组 MIMD并行算法

A MIMD PARALLEL ALGORITHM TO SOLVE TRIDIAGONAL TOEPLITZ LINEAR EQUATIONS
Chen Siqing Chen Tinghuai Zhou Liuding. A MIMD PARALLEL ALGORITHM TO SOLVE TRIDIAGONAL TOEPLITZ LINEAR EQUATIONS[J]. Journal of Chongqing University(Natural Science Edition), 1992, 15(4): 21-25
Authors:Chen Siqing Chen Tinghuai Zhou Liuding
Affiliation:Chen Siqing Chen Tinghuai Zhou Liuding
Abstract:The rank one updating formula and the parallel eliminating algorithm for linear recurrence systems ane combined fo form a MTMD parallel algorithm fo solve tridiagonal Toeplitz Cinear equations. This algorithm has a simple strictire and requires onlty a few storages as well as in-terprocessor communications. There is no special demand on the number of processors in the parallel system. The speedup can come dose to p12 comparing with the LU decomposition method (p is the number of processors). It is worth pointing out that it is proposed algcmthn that considels and organizes the parallel arithmetic in the first order linear ricurrence systems with constant coefficients.
Keywords:tridiagonal Toeplitz equations  MIMD parallel algorithm  rank one updating  first order linear recurrence/cyclic elimination
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号