非Lipschitz条件下Ch-空间中立型随机泛函微分方程解的存在惟一性 |
| |
引用本文: | 岳超慧,张长勤,吴坚. 非Lipschitz条件下Ch-空间中立型随机泛函微分方程解的存在惟一性[J]. 山东大学学报(理学版), 2013, 48(3): 73-79 |
| |
作者姓名: | 岳超慧 张长勤 吴坚 |
| |
作者单位: | 安徽农业大学理学院,安徽合肥,230036 |
| |
摘 要: | 研究了Ch-空间中具有无穷时滞的中立型随机泛函微分方程, 利用Picard迭代法给出了非Lipschitz条件下其解的存在惟一性。
|
关 键 词: | 中立型随机泛函微分方程 Ch 空间 非Lipschitz条件 |
收稿时间: | 2012-08-30 |
Existence and uniqueness of the solution to neutral stochastic functional differential equations under non-Lipschitz conditions with infinite delay at phase space Ch |
| |
Affiliation: | School of Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China |
| |
Abstract: | The existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delay at phase space (Ch, |·|h) under non Lipschitz conditions on the coefficients was proved by means of the Picard approximations. |
| |
Keywords: | neutral stochastic functional differential equations phase space Ch non-Lipschitz conditions |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《山东大学学报(理学版)》浏览原始摘要信息 |
|
点击此处可从《山东大学学报(理学版)》下载全文 |