首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于混合深度学习的推荐算法
引用本文:胡胜利,张松林. 一种基于混合深度学习的推荐算法[J]. 厦门理工学院学报, 2021, 29(3): 49-55. DOI: doi:1019697/jcnki1673 4432202103008
作者姓名:胡胜利  张松林
作者单位:安徽理工大学计算机科学与工程学院,安徽 淮南232001
摘    要:为解决推荐算法中的冷启动和数据稀疏性问题,提高推荐的效率,提出一种基于混合深度学习的推荐算法。该算法将深度学习中的半自动编码器和多层感知机模型有效结合,通过半自动编码器模型解决稀疏数据,并融合相关辅助信息解决冷启动问题。它先用半自动编码器提取用户和项目的深层次特征,再将提取的潜在特征输入到多层感知机中进行非线性融合,完成评分预测。实验结果表明,相比于其他算法,该算法可以更好地处理稀疏数据和冷启动问题,使推荐准确性得到不同程度的提升。在给定数据集上,该算法比传统矩阵分解算法的均方根误差提升了约46%。

关 键 词:推荐算法  混合深度学习  HSAEM算法  冷启动  特征提取  特征融合  均方根误差

A Hybrid Deep Learning Algorithm for Recommendation System
HU Shengli,ZHANG Songlin. A Hybrid Deep Learning Algorithm for Recommendation System[J]. Journal of Xiamen University of Technology, 2021, 29(3): 49-55. DOI: doi:1019697/jcnki1673 4432202103008
Authors:HU Shengli  ZHANG Songlin
Affiliation:(School of Computer Science & Engineering,Anhui University of Science & Technology,Huainan 232001,China)
Abstract:In order to improve cold start and data sparsity in the recommendation algorithm and enhance the recommendation effect,this paper proposes a hybrid deep learning based recommendation algorithm HSAEM (hybrid semi autoencoder and multilayer perceptron).It effectively combines the semi automatic encoder in deep learning with the multilayer perceptron model.It improves the sparse data through the semi automatic encoder model,solves the cold start problem by fusing auxiliary information,extracts the deep features of users and projects,and sends the extracted potential characteristics to the multilayer perceptron for nonlinear fusion,thus implementing the score predicts.Results show that HSAEM helps raise accuracy to various degrees by more effective dealing with cold start and data sparsity,its RMSE standing 4.6% more accurate than the traditional matrix factorization algorithm on a given data set.
Keywords:recommendation algorithmhybrid deep learningHSAEM algorithmcold startfeature extractionfeature fusionRMSE
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《厦门理工学院学报》浏览原始摘要信息
点击此处可从《厦门理工学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号